Pyspark - 选择至少连续 2 天看到的用户



我有一个数据帧dataframe_actions,其中包含以下字段:user_idactiondayuser_id对于每个用户都是唯一的,day采用 1 到 31 之间的值。我想只过滤掉至少连续 2 天看到的用户,例如:

如果在第 1、2、4、8、9 天看到用户,我想保留他们,因为他们至少连续 2 天被看到。

我现在正在做的很笨重而且非常慢(而且似乎不起作用(:

df_final = spark.sql(""" with t1( select user_id, day, row_number()
           over(partition by user_id order by day)-day diff from dataframe_actions), 
           t2( select user_id, day, collect_set(diff) over(partition by user_id) diff2 from t1) 
           select user_id, day from t2 where size(diff2) > 2""")

类似的东西,但我不知道如何真正解决这个问题。

编辑:

| user_id | action | day |
--------------------------
| asdc24  | conn   |  1  |
| asdc24  | conn   |  2  |
| asdc24  | conn   |  5  |
| adsfa6  | conn   |  1  |
| adsfa6  | conn   |  3  |
| asdc24  | conn   |  9  |
| adsfa6  | conn   |  5  |
| asdc24  | conn   |  11 |
| adsfa6  | conn   |  10 |
| asdc24  | conn   |  15 |

应该返回

| user_id | action | day |
--------------------------
| asdc24  | conn   |  1  |
| asdc24  | conn   |  2  |
| asdc24  | conn   |  5  |
| asdc24  | conn   |  9  |
| asdc24  | conn   |  11 |
| asdc24  | conn   |  15 |

因为只有此用户至少连续两天(第 1 天和第 2 天(连接。

使用 lag 获取每个用户的前一天,从当前行的日期中减去它,然后检查其中是否至少有一个是 1。这是通过group by和之后的filter来完成的。

from pyspark.sql import functions as f
from pyspark.sql import Window
w = Window.partitionBy(dataframe_actions.user_id).orderBy(dataframe_actions.day)
user_prev = dataframe_actions.withColumn('prev_day_diff',dataframe_actions.day-f.lag(dataframe_actions.day).over(w))
res = user_prev.groupBy(user_prev.user_id).agg(f.sum(f.when(user_prev.prev_day_diff==1,1).otherwise(0)).alias('diff_1'))
res.filter(res.diff_1 >= 1).show()

另一种行号差异方法的方法。这将允许为给定user_id选择所有列。

w = Window.partitionBy(dataframe_actions.user_id).orderBy(dataframe_actions.day)
rownum_diff = dataframe_actions.withColumn('rdiff',day-f.row_number().over(w))
w1 = Window.partitionBy(rownum_diff.user_id)
counts_per_user = rownum_diff.withColumn('cnt',f.sum(f.when(rownum_diff.rdiff == 1,1).otherwise(0)).over(w1))
cols_to_select = ['user_id','action','day']
counts_per_user.filter(counts_per_user.cnt >= 1).select(*cols_to_select).show()
另一种

使用给定输入的SQL方法。

皮斯帕克

>>> from pyspark.sql.functions import *
>>> df = sc.parallelize([("asdc24","conn",1),
... ("asdc24","conn",2),
... ("asdc24","conn",5),
... ("adsfa6","conn",1),
... ("adsfa6","conn",3),
... ("asdc24","conn",9),
... ("adsfa6","conn",5),
... ("asdc24","conn",11),
... ("adsfa6","conn",10),
... ("asdc24","conn",15)]).toDF(["user_id","action","day"])
>>> df.createOrReplaceTempView("qubix")
>>> spark.sql(" select * from qubix order by user_id, day").show()
+-------+------+---+
|user_id|action|day|
+-------+------+---+
| adsfa6|  conn|  1|
| adsfa6|  conn|  3|
| adsfa6|  conn|  5|
| adsfa6|  conn| 10|
| asdc24|  conn|  1|
| asdc24|  conn|  2|
| asdc24|  conn|  5|
| asdc24|  conn|  9|
| asdc24|  conn| 11|
| asdc24|  conn| 15|
+-------+------+---+
>>> spark.sql(""" with t1 (select user_id,action, day,lead(day) over(partition by user_id order by day) ld from qubix), t2 (select user_id from t1 where ld-t1.day=1 ) select * from qubix where user_id in (select user_id from t2) """).show()
+-------+------+---+
|user_id|action|day|
+-------+------+---+
| asdc24|  conn|  1|
| asdc24|  conn|  2|
| asdc24|  conn|  5|
| asdc24|  conn|  9|
| asdc24|  conn| 11|
| asdc24|  conn| 15|
+-------+------+---+
>>>

斯卡拉版本

scala> val df = Seq(("asdc24","conn",1),
     | ("asdc24","conn",2),
     | ("asdc24","conn",5),
     | ("adsfa6","conn",1),
     | ("adsfa6","conn",3),
     | ("asdc24","conn",9),
     | ("adsfa6","conn",5),
     | ("asdc24","conn",11),
     | ("adsfa6","conn",10),
     | ("asdc24","conn",15)).toDF("user_id","action","day")
df: org.apache.spark.sql.DataFrame = [user_id: string, action: string ... 1 more field]
scala> df.orderBy('user_id,'day).show(false)
+-------+------+---+
|user_id|action|day|
+-------+------+---+
|adsfa6 |conn  |1  |
|adsfa6 |conn  |3  |
|adsfa6 |conn  |5  |
|adsfa6 |conn  |10 |
|asdc24 |conn  |1  |
|asdc24 |conn  |2  |
|asdc24 |conn  |5  |
|asdc24 |conn  |9  |
|asdc24 |conn  |11 |
|asdc24 |conn  |15 |
+-------+------+---+

scala> df.createOrReplaceTempView("qubix")
scala> spark.sql(""" with t1 (select user_id,action, day,lead(day) over(partition by user_id order by day) ld from qubix), t2 (select user_id fro
m t1 where ld-t1.day=1 ) select * from qubix where user_id in (select user_id from t2) """).show(false)
+-------+------+---+
|user_id|action|day|
+-------+------+---+
|asdc24 |conn  |1  |
|asdc24 |conn  |2  |
|asdc24 |conn  |5  |
|asdc24 |conn  |9  |
|asdc24 |conn  |11 |
|asdc24 |conn  |15 |
+-------+------+---+

scala>

相关内容

  • 没有找到相关文章

最新更新