TypeError: add(): 参数 'other' (位置 1) 必须是 Tensor,而不是 numpy.ndarray



我正在使用Pytorch和fastai在装有最新anaconda3的linux系统上测试ResNet-34 trained_model。为了将其作为批处理作业运行,我注释掉了与 gui 相关的行。它开始运行几个小时,然后在验证步骤中停止,错误消息如下。

...
^M100%|█████████▉| 452/453 [1:07:07<00:08,  8.75s/it, 
loss=1.23]^[[A^[[A^[[A
^MValidation:   0%|          | 0/40 [00:00<?, ?it/s]^[[A^[[A^[[ATraceback 
(most recent call last):
  File "./resnet34_pretrained_PNG_nogui_2.py", line 279, in <module>
    learner.fit(lr,1,callbacks=[f1_callback])
  File "/project/6000192/jemmyhu/resnet_png/fastai/learner.py", line 302, 
in fit
    return self.fit_gen(self.model, self.data, layer_opt, n_cycle, 
**kwargs)
  File "/project/6000192/jemmyhu/resnet_png/fastai/learner.py", line 249, 
in fit_gen
    swa_eval_freq=swa_eval_freq, **kwargs)
  File "/project/6000192/jemmyhu/resnet_png/fastai/model.py", line 162, in 
fit
    vals = validate(model_stepper, cur_data.val_dl, metrics, epoch, 
seq_first=seq_first, validate_skip = validate_skip)
  File "/project/6000192/jemmyhu/resnet_png/fastai/model.py", line 241, in 
validate
    res.append([to_np(f(datafy(preds), datafy(y))) for f in metrics])
  File "/project/6000192/jemmyhu/resnet_png/fastai/model.py", line 241, in 
<listcomp>
    res.append([to_np(f(datafy(preds), datafy(y))) for f in metrics])
  File "./resnet34_pretrained_PNG_nogui_2.py", line 237, in __call__
    self.TP += (preds*targs).float().sum(dim=0)
TypeError: add(): argument 'other' (position 1) must be Tensor, not 
numpy.ndarray

原始代码的链接是https://www.kaggle.com/iafoss/pretrained-resnet34-with-rgby-0-460-public-lb

我副本中的第 279 行和第 237 行如下所示:

226 class F1:
227     __name__ = 'F1 macro'
228     def __init__(self,n=28):
229         self.n = n
230         self.TP = np.zeros(self.n)
231         self.FP = np.zeros(self.n)
232         self.FN = np.zeros(self.n)
233
234     def __call__(self,preds,targs,th=0.0):
235         preds = (preds > th).int()
236         targs = targs.int()
237         self.TP += (preds*targs).float().sum(dim=0)
238         self.FP += (preds > targs).float().sum(dim=0)
239         self.FN += (preds < targs).float().sum(dim=0)
240         score = (2.0*self.TP/(2.0*self.TP + self.FP + self.FN + 1e-6)).mean()
241         return score
276 lr = 0.5e-2
277 with warnings.catch_warnings():
278     warnings.simplefilter("ignore")
279     learner.fit(lr,1,callbacks=[f1_callback])

有人能知道这个问题吗?

非常感谢,Jemmy

好的,错误似乎是针对最新的 pytorch-1.0.0,当将 pytorch 降级为 pytorch-0.4.1 时,代码似乎有效(此时传递了错误行)。仍然不知道使代码与 pytorch-1.0.0 一起使用

我对这个 Kaggle 内核也有同样的问题。我的解决方法如下:

第一个选项:在F1 __call__方法中,将predstargspytorch张量转换为 numpy 数组;

第二个选项:用pytorch张量而不是 numpy 数组初始化 TP/FP/FN,即将np.zeros(self.n)替换为 torch.zeros(1, self.n)

基本上,主要思想 - 所有变量都应该是相同的类型。

检查输入数据参数。确保它在123123而不是在 [123123] 中

相关内容

  • 没有找到相关文章

最新更新