Sagemaker 在本地实例上预测,JSON 错误



我正在尝试在 Sagemaker 实例上的 MXNet 上制作迁移学习方法。训练和服务在本地开始没有任何问题,我正在使用该python代码来预测:

def predict_mx(net, fname):
with open(fname, 'rb') as f:
img = image.imdecode(f.read())
plt.imshow(img.asnumpy())
plt.show()
data = transform(img, -1, test_augs)
plt.imshow(data.transpose((1,2,0)).asnumpy()/255)
plt.show()
data = data.expand_dims(axis=0)
return net.predict(data.asnumpy().tolist())

我检查了data.asnumpy().tolist()正常,并且 pyplot 绘制图像(第一个是原始图像,第二个是调整大小的图像(。但是net.predict引发一个错误:

---------------------------------------------------------------------------
JSONDecodeError                           Traceback (most recent call last)
<ipython-input-171-ea0f1f5bdc72> in <module>()
----> 1 predict_mx(predictor.predict, './data2/burgers-imgnet/00103785.jpg')
<ipython-input-170-150a72b14997> in predict_mx(net, fname)
30     plt.show()
31     data = data.expand_dims(axis=0)
---> 32     return net(data.asnumpy().tolist())
33 
~/Projects/Lab/ML/AWS/v/lib64/python3.6/site-packages/sagemaker/predictor.py in predict(self, data)
89         if self.deserializer is not None:
90             # It's the deserializer's responsibility to close the stream
---> 91             return self.deserializer(response_body, response['ContentType'])
92         data = response_body.read()
93         response_body.close()
~/Projects/Lab/ML/AWS/v/lib64/python3.6/site-packages/sagemaker/predictor.py in __call__(self, stream, content_type)
290         """
291         try:
--> 292             return json.load(codecs.getreader('utf-8')(stream))
293         finally:
294             stream.close()
/usr/lib64/python3.6/json/__init__.py in load(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
297         cls=cls, object_hook=object_hook,
298         parse_float=parse_float, parse_int=parse_int,
--> 299         parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw)
300 
301 
/usr/lib64/python3.6/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
352             parse_int is None and parse_float is None and
353             parse_constant is None and object_pairs_hook is None and not kw):
--> 354         return _default_decoder.decode(s)
355     if cls is None:
356         cls = JSONDecoder
/usr/lib64/python3.6/json/decoder.py in decode(self, s, _w)
337 
338         """
--> 339         obj, end = self.raw_decode(s, idx=_w(s, 0).end())
340         end = _w(s, end).end()
341         if end != len(s):
/usr/lib64/python3.6/json/decoder.py in raw_decode(self, s, idx)
355             obj, end = self.scan_once(s, idx)
356         except StopIteration as err:
--> 357             raise JSONDecodeError("Expecting value", s, err.value) from None
358         return obj, end
JSONDecodeError: Expecting value: line 1 column 1 (char 0)

我试图json.dumps我的数据,这没有问题。

请注意,我尚未在 AWS 上部署该服务,我希望能够在之前在本地测试模型和预测,以便进行更大的训练并在以后为其提供服务。

感谢您的帮助

net.predict的调用工作正常。

您似乎正在使用SageMaker PythonSDK predict_fn进行托管。调用predict_fn后,MXNet 容器将尝试将预测序列化为 JSON,然后再将其发送回客户端。您可以在此处看到执行此操作的代码:https://github.com/aws/sagemaker-mxnet-container/blob/master/src/mxnet_container/serve/transformer.py#L132

容器序列化失败,因为net.predict不返回可序列化的对象。您可以通过返回列表来解决此问题:

return net.predict(data.asnumpy().tolist()).asnumpy().tolist()

另一种方法是使用transform_fn而不是prediction_fn,以便您可以自己处理输出序列化。您可以在此处查看transform_fn的示例 https://github.com/aws/sagemaker-python-sdk/blob/e93eff66626c0ab1f292048451c4c3ac7c39a121/examples/cli/host/script.py#L41

您对从笔记本传递到预测环境(在 docker 中(的数据进行反序列化时遇到问题,但鉴于提供的代码,我无法重现此问题。使用 MXNet 估计器(例如from sagemaker.mxnet import MXNet(时,您可以在入口点脚本中实现transform_fn,以反序列化数据并使用模型进行预测。在函数开头使用json.loads,如下例所示;

def transform_fn(net, data, input_content_type, output_content_type):
"""
Transform a request using the Gluon model. Called once per request.
:param net: The Gluon model.
:param data: The request payload.
:param input_content_type: The request content type.
:param output_content_type: The (desired) response content type.
:return: response payload and content type.
"""
# we can use content types to vary input/output handling, but
# here we just assume json for both
parsed = json.loads(data)
nda = mx.nd.array(parsed)
output = net(nda)
prediction = mx.nd.argmax(output, axis=1)
response_body = json.dumps(prediction.asnumpy().tolist()[0])
return response_body, output_content_type

如果json.loads命令仍有问题,则应检查data的值,并仔细查找与编码相关的问题(即以开头的字符串无效(。

注意:函数和堆栈跟踪中也有不同的代码,因此您可能需要确认正在运行您认为正在运行的代码。并且您提到您尚未部署(本地或实例(,但这是预测所必需的。

相关内容

  • 没有找到相关文章

最新更新