将时间戳转换为Spark(Java)的时期



我有一个带有 Timestamp的列,dataframe中的格式 yyyy-MM-dd HH:mm:ss

该列是按较早日期在较早行

的时间进行排序的

我运行此命令

List<Row> timeRows = df.withColumn(ts, df.col(ts).cast("long")).select(ts).collectAsList();

我面临一个奇怪的问题,即以后的日期的价值小于早期日期。示例:

[670] : 1550967304 (2019-02-23 04:30:15)
[671] : 1420064100 (2019-02-24 08:15:04)

这是转换为时代的正确方法还是有其他方式?

尝试使用unix_timestamp将字符串日期时间转换为时间戳。根据文件:

unix_timestamp(列S,字符串P)带有给定的时间字符串 模式(请参阅 [http://docs.oracle.com/javase/tutorial/i18n/format/simpledateformat.html ])至Unix时间戳记(以秒为单位),如果失败,请返回null。

import org.apache.spark.functions._  
val format = "yyyy-MM-dd HH:mm:ss"
df.withColumn("epoch_sec", unix_timestamp($"ts", format)).select("epoch_sec").collectAsList()

另外,请参见https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-functions-datetime.html

您应该在org.apache.spark.sql.functions

中使用内置函数unix_timestamp()

https://spark.apache.org/docs/1.6.0/api/java/java/org/apache/spark/spark/sql/functions.html#unix_timestamp()

我认为您正在使用:unix_timestamp()

您可以从:

中导入
import static org.apache.spark.sql.functions.unix_timestamp;

使用:

df = df.withColumn(
    "epoch",
    unix_timestamp(col("date")));

这是一个完整的例子,我试图模仿您的用例:

package net.jgp.books.spark.ch12.lab990_others;
import static org.apache.spark.sql.functions.col;
import static org.apache.spark.sql.functions.from_unixtime;
import static org.apache.spark.sql.functions.unix_timestamp;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
 * Use of from_unixtime() and unix_timestamp().
 * 
 * @author jgp
 */
public class EpochTimestampConversionApp {
  /**
   * main() is your entry point to the application.
   * 
   * @param args
   */
  public static void main(String[] args) {
    EpochTimestampConversionApp app = new EpochTimestampConversionApp();
    app.start();
  }
  /**
   * The processing code.
   */
  private void start() {
    // Creates a session on a local master
    SparkSession spark = SparkSession.builder()
        .appName("expr()")
        .master("local")
        .getOrCreate();
    StructType schema = DataTypes.createStructType(new StructField[] {
        DataTypes.createStructField(
            "event",
            DataTypes.IntegerType,
            false),
        DataTypes.createStructField(
            "original_ts",
            DataTypes.StringType,
            false) });
    // Building a df with a sequence of chronological timestamps
    List<Row> rows = new ArrayList<>();
    long now = System.currentTimeMillis() / 1000;
    for (int i = 0; i < 1000; i++) {
      rows.add(RowFactory.create(i, String.valueOf(now)));
      now += new Random().nextInt(3) + 1;
    }
    Dataset<Row> df = spark.createDataFrame(rows, schema);
    df.show();
    df.printSchema();
    // Turning the timestamps to Timestamp datatype
    df = df.withColumn(
        "date",
        from_unixtime(col("original_ts")).cast(DataTypes.TimestampType));
    df.show();
    df.printSchema();
    // Turning back the timestamps to epoch
    df = df.withColumn(
        "epoch",
        unix_timestamp(col("date")));
    df.show();
    df.printSchema();
    // Collecting the result and printing out
    List<Row> timeRows = df.collectAsList();
    for (Row r : timeRows) {
      System.out.printf("[%d] : %s (%s)n",
          r.getInt(0),
          r.getAs("epoch"),
          r.getAs("date"));
    }
  }
}

,输出应为:

...
[994] : 1551997326 (2019-03-07 14:22:06)
[995] : 1551997329 (2019-03-07 14:22:09)
[996] : 1551997330 (2019-03-07 14:22:10)
[997] : 1551997332 (2019-03-07 14:22:12)
[998] : 1551997333 (2019-03-07 14:22:13)
[999] : 1551997335 (2019-03-07 14:22:15)

希望这会有所帮助。

相关内容

  • 没有找到相关文章

最新更新