在加入PySpark中的两个数据范围时,如何解决重复的列名



我有一个完全相同的文件A和B。我正在尝试在这两个数据范围内执行内部和外部连接。由于我将所有列作为重复的列,因此现有答案无济于事。我经历的其他问题包含一个或两个重复的col,我的问题是整个文件是彼此重复的:在数据和列名中。

我的代码:

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from pyspark.sql import DataFrameReader, DataFrameWriter
from datetime import datetime
import time
# @params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
print("All imports were successful.")
df = spark.read.orc(
    's3://****'
)
print("First dataframe read with headers set to True")
df2 = spark.read.orc(
    's3://****'
)
print("Second dataframe read with headers set to True")
# df3 = df.join(df2, ['c_0'], "outer")
# df3 = df.join(
#     df2,
#     df["column_test_1"] == df2["column_1"],
#     "outer"
# )
df3 = df.alias('l').join(df2.alias('r'), on='c_0') #.collect()
print("Dataframes have been joined successfully.")
output_file_path = 's3://****'
)
df3.write.orc(
    output_file_path
)
print("Dataframe has been written to csv.")
job.commit()

我面临的错误是:

pyspark.sql.utils.AnalysisException: u'Duplicate column(s): "c_4", "c_38", "c_13", "c_27", "c_50", "c_16", "c_23", "c_24", "c_1", "c_35", "c_30", "c_56", "c_34", "c_7", "c_46", "c_49", "c_57", "c_45", "c_31", "c_53", "c_19", "c_25", "c_10", "c_8", "c_14", "c_42", "c_20", "c_47", "c_36", "c_29", "c_15", "c_43", "c_32", "c_5", "c_37", "c_18", "c_54", "c_3", "__created_at__", "c_51", "c_48", "c_9", "c_21", "c_26", "c_44", "c_55", "c_2", "c_17", "c_40", "c_28", "c_33", "c_41", "c_22", "c_11", "c_12", "c_52", "c_6", "c_39" found, cannot save to file.;'
End of LogType:stdout

这里没有快捷方式。Pyspark期望左右数据范围具有不同的字段名称集(除了JOIN密钥外)。

一种解决方案是将每个字段名称带有"左_"或" right_",如下所示:

# Obtain columns lists
left_cols = df.columns
right_cols = df2.columns
# Prefix each dataframe's field with "left_" or "right_"
df = df.selectExpr([col + ' as left_' + col for col in left_cols])
df2 = df2.selectExpr([col + ' as right_' + col for col in right_cols])
# Perform join
df3 = df.alias('l').join(df2.alias('r'), on='c_0')

这是一个辅助功能,可以加入两个添加别名的数据范围:

def join_with_aliases(left, right, on, how, right_prefix):
    renamed_right = right.selectExpr(
        [
            col + f" as {col}_{right_prefix}"
            for col in df2.columns
            if col not in on
        ]
        + on
    )
    right_on = [f"{x}{right_prefix}" for x in on]
    return left.join(renamed_right, on=on, how=how)

以及如何使用它的示例:

df1 = spark.createDataFrame([[1, "a"], [2, "b"], [3, "c"]], ("id", "value"))
df2 = spark.createDataFrame([[1, "a"], [2, "b"], [3, "c"]], ("id", "value"))
join_with_aliases(
   left=df1,
   right=df2,
   on=["id"],
   how="inner",
   right_prefix="_right"
).show()
+---+-----+------------+
| id|value|value_right|
+---+-----+------------+
|  1|    a|           a|
|  3|    c|           c|
|  2|    b|           b|
+---+-----+------------+

我做了这样的事情,但是在 scala 中,您也可以将相同的转换为pyspark ...

  • 重命名每个dataframe中的列名

    dataFrame1.columns.foreach(columnName => {
      dataFrame1 = dataFrame1.select(dataFrame1.columns.head, dataFrame1.columns.tail: _*).withColumnRenamed(columnName, s"left_$columnName")
    })
    dataFrame1.columns.foreach(columnName => {
      dataFrame2 = dataFrame2.select(dataFrame2.columns.head, dataFrame2.columns.tail: _*).withColumnRenamed(columnName, s"right_$columnName")
    })
    
  • 现在join通过提及列名

    resultDF = dataframe1.join(dataframe2, dataframe1("left_c_0") === dataframe2("right_c_0"))
    

相关内容

  • 没有找到相关文章

最新更新