对于此列表:
current_trace = [[3,5,1,5,7,9,4]]
我运行sliding_tristep()
方法,其中包括predict()
和window()
方法:
def predict(lst):
print "predicting for", lst
print "result", max(lst) + 0.0
return max(lst) + 0.0
def window(lst, n=3):
for x in range(1, len(lst)+1): # or len(l)+n to continue till the end
yield(lst[max(0, x-n):x])
def sliding_tristep(full_trace, future_step = 2, window_size = 3):
for user_trace in full_trace:
for current_input in window(user_trace):
counter = 0
trace = current_input
accumulator = []
while counter <= future_step:
next_prediction = predict(trace)
trace.append(next_prediction)
accumulator.append(next_prediction)
trace = trace[-window_size:]
counter += 1
print current_input, accumulator
当我运行sliding_tristep(current_trace)
时,在print current_input, accumulator
行的输出中,我注意到current_input
已经被修改,尽管它不在进行sliding_tristep(current_trace)
计算的while循环中。
我想知道为什么会发生这种事?python怎么可能修改一个在后续循环中根本不使用的列表呢。
我运行
sliding_tristep(current_trace)
,在print current_input, accumulator
行的输出中,我注意到current_trace
已被修改
刚刚测试了您的代码:
>>> current_trace = [[3,5,1,5,7,9,4]]
>>> sliding_tristep(current_trace)
...
>>> current_trace
[[3, 5, 1, 5, 7, 9, 4]]
current_trace
不会被修改。
我想知道为什么会发生这种情况?python怎么可能修改一个在后续循环中根本不使用的列表呢。
不过,我猜你指的是current_input
,而不是current_trace
。
current_input
会被修改,因为trace
是对current_input
的引用,跟踪会被修改。
如果您想将current_input
复制为trace
,这里有一种方法:
>>> foo = [1,2,3]
>>> bar = foo[:]
>>> bar.append(4)
>>> foo
[1, 2, 3]
>>> bar
[1, 2, 3, 4]
应用于您的代码:
def sliding_tristep(full_trace, future_step = 2, window_size = 3):
for user_trace in full_trace:
for current_input in window(user_trace):
counter = 0
trace = current_input[:] # make a copy of current_input
accumulator = []
while counter <= future_step:
next_prediction = predict(trace)
trace.append(next_prediction)
accumulator.append(next_prediction)
trace = trace[-window_size:]
counter += 1
print current_input, accumulator
如果你不修改列表中的元素(由于整数是不可变的,你不能),你可以像我在前面的例子中建议的那样进行浅层复制。如果您使用的是可变对象(lists
或其他类型的对象),那么您需要使用copy
模块进行深度复制。看看这个答案:https://stackoverflow.com/a/184660/1290438关于这个主题。
使用trace.extend(current_input)
而不是trace = current_input
解决了问题。但是trace
列表必须被预先初始化。
解决方案看起来像:
def sliding_tristep(full_trace, future_step = 2, window_size = 3):
for user_trace in full_trace:
for current_input in window(user_trace):
counter = 0
trace = [] #here is the solution
trace.extend(current_input) #here is the solution
accumulator = []
while counter <= future_step:
next_prediction = predict(trace)
trace.append(next_prediction)
accumulator.append(next_prediction)
trace = trace[-window_size:]
counter += 1