我有一个包含 627 个观测值和 16 个变量的数据框。我正在考虑一个名为"ZoneDivison"的列,其中包含以下因素:东北,东部和东南部。因此,我想比较相邻的行值并创建一个新列,如果两个相邻的行具有相同的区域,则为1,如果相邻行不同,则为0。
我参考了以下链接以找到出路:[这里]匹配 R 中的两列[此处] 比较多行的行值 (R(
library(dplyr)
a <- c(rep("Eastern",3),rep ("North Eastern", 6),rep("South Eastern", 3))
a=data.frame(a)
colnames(a)="ZoneDivision"
#comparing the zones
library(plyr)
ddply(n, .(ZoneDivision),summarize,ZoneMatching=Position(isTRUE,ZoneDivision))
Expected Result
ZoneDivision ZoneMatching
1 Eastern NA
2 Eastern 1
3 Eastern 1
4 North Eastern 0
5 North Eastern 1
6 North Eastern 1
7 North Eastern 1
8 North Eastern 1
9 North Eastern 1
10 South Eastern 0
11 South Eastern 1
12 South Eastern 1
Actual Result
ZoneDivision ZoneMatching
1 Eastern NA
2 North Eastern NA
3 South Eastern NA
我应该怎么做?请帮忙!!
使用base R,我们可以做
as.numeric(c(NA, a$ZoneDivision[-1] == a$ZoneDivision[-nrow(a)]))
#[1] NA 1 1 0 1 1 1 1 1 0 1 1
data.table 方式:
a <- c(rep("Eastern",3),rep ("North Eastern", 6),rep("South Eastern", 3))
dt <- as.data.table(a)
dt[,'ZoneMatching' := as.numeric(.SD[,a] == shift(.SD[,a],1))]
在其中添加新的 ZoneMatch 列作为由shift(( 函数生成的 a 列和滞后值之间的逻辑比较的数值。
您可以使用
lag
来获取它:
library(dplyr)
a %>%
mutate(ZoneMatching = as.numeric((ZoneDivision == lag(ZoneDivision, 1))))
ZoneDivision ZoneMatching
1 Eastern NA
2 Eastern 1
3 Eastern 1
4 North Eastern 0
5 North Eastern 1
6 North Eastern 1
7 North Eastern 1
8 North Eastern 1
9 North Eastern 1
10 South Eastern 0
11 South Eastern 1
12 South Eastern 1
我们可以使用base R
with(a, c(NA, +(head(ZoneDivision, -1) == tail(ZoneDivision, -1))))
#[1] NA 1 1 0 1 1 1 1 1 0 1 1