嵌套归约函数/递归/函数式编程/树遍历



我一直遇到这样的情况:我最终嵌套了很多reduce函数来向下钻取到一个对象中。很难提取逻辑,因为在底部我需要访问沿途遍历的各种键。从本质上讲,我正在寻找一种更好的方法来实现以下目标:

import { curry } from 'lodash/fp'
import { fromJS } from 'immutable'
const reduce = curry((fn, acc, it) => it.reduce(fn, acc))
describe('reduceNested', () => {
const input = fromJS({
a1: {
b1: {
c1: {
d1: {
e1: 'one',
e2: 'two',
e3: 'three'
},
d2: {
e1: 'one',
e2: 'two',
e3: 'three'
}
},
c2: {
d1: {
e1: 'one',
e2: 'two'
}
}
}
},
a2: {
b1: {
c1: {
d1: {
e1: 'one'
},
d2: {
e1: 'one'
}
}
},
b2: {
c1: {
d1: {
e1: 'one'
},
d2: {
e1: 'one'
}
}
}
},
a3: {
b1: {
c1: {}
}
}
})
const expected = fromJS({
one: [
'a1.b1.c1.d1.e1',
'a1.b1.c1.d2.e1',
'a1.b1.c2.d1.e1',
'a2.b1.c1.d1.e1',
'a2.b1.c1.d2.e1',
'a2.b2.c1.d1.e1',
'a2.b2.c1.d2.e1'
],
two: ['a1.b1.c1.d1.e2', 'a1.b1.c1.d2.e2', 'a1.b1.c2.d1.e2'],
three: ['a1.b1.c1.d1.e3', 'a1.b1.c1.d2.e3']
})
const init = fromJS({ one: [], two: [], three: [] })
test('madness', () => {
const result = reduce(
(acc2, val, key) =>
reduce(
(acc3, val2, key2) =>
reduce(
(acc4, val3, key3) =>
reduce(
(acc5, val4, key4) =>
reduce(
(acc6, val5, key5) =>
acc6.update(val5, i =>
i.push(`${key}.${key2}.${key3}.${key4}.${key5}`)
),
acc5,
val4
),
acc4,
val3
),
acc3,
val2
),
acc2,
val
),
init,
input
)
expect(result).toEqual(expected)
})
test('better', () => {
const result = reduceNested(
(acc, curr, a, b, c, d, e) =>
acc.update(curr, i => i.push(`${a}.${b}.${c}.${d}.${e}`)),
init,
input
)
expect(result).toEqual(expected)
})
})

我想编写一个函数reduceNested,它实现了相同的结果,但没有所有嵌套的reduce函数。我没有看到lodash/fp或类似的地址,所以我的想法是创建一个新的函数reduceNested并将变量添加到树中每个键的回调中。我已经尝试实现实际逻辑,但不幸的是暂时卡住了。我知道reduceNested需要使用fn.length来确定要钻入源头的程度,但除此之外,我只是卡住了。

const reduceNested = curry((fn, acc, iter) => {
// TODO --> use (fn.length - 2)
})

函数式风格

您的答案走在正确的轨道上,但是根据用户提供的过程长度重复出现是一个错误。相反,可变长度路径应作为单个可变长度值(数组(传递

const reduceTree = (proc, state, tree, path = []) =>
reduce                        // call reduce with:
( (acc, [ key, value ]) =>  // reducer
isObject (value)               // value is an object (another tree):
? reduceTree                 //   recur with:
( proc                   //     the proc
, acc                    //     the acc
, value                  //     this value (the tree)
, append (path, key)     //     add this key to the path
)                        // value is NOT an object (non-tree):
: proc                       //   call the proc with:
( acc                    //     the acc
, value                  //     this value (non-tree, plain value)
, append (path, key)     //     add this key to the path
)
, state                     // initial input state 
, Object.entries (tree)     // [ key, value ] pairs of input tree
)

上面的自由值被定义为使用前缀表示法,这在函数式风格中更熟悉 –

const isObject = x =>
Object (x) === x
const reduce = (proc, state, arr) =>
arr .reduce (proc, state)
const append = (xs, x) =>
xs .concat ([ x ])

现在我们有一个通用的reduceTree函数——

const result =
reduceTree
( (acc, value, path) =>           // reducer
[ ...acc, { path, value } ] 
, []                              // initial state
, input                           // input tree
)
console.log (result)
// [ { path: [ 'a1', 'b1', 'c1', 'd1', 'e1' ], value: 'one' }
// , { path: [ 'a1', 'b1', 'c1', 'd1', 'e2' ], value: 'two' }
// , { path: [ 'a1', 'b1', 'c1', 'd1', 'e3' ], value: 'three' }
// , { path: [ 'a1', 'b1', 'c1', 'd2', 'e1' ], value: 'one' }
// , { path: [ 'a1', 'b1', 'c1', 'd2', 'e2' ], value: 'two' }
// , { path: [ 'a1', 'b1', 'c1', 'd2', 'e3' ], value: 'three' }
// , { path: [ 'a1', 'b1', 'c2', 'd1', 'e1' ], value: 'one' }
// , { path: [ 'a1', 'b1', 'c2', 'd1', 'e2' ], value: 'two' }
// , { path: [ 'a2', 'b1', 'c1', 'd1', 'e1' ], value: 'one' }
// , { path: [ 'a2', 'b1', 'c1', 'd2', 'e1' ], value: 'one' }
// , { path: [ 'a2', 'b2', 'c1', 'd1', 'e1' ], value: 'one' }
// , { path: [ 'a2', 'b2', 'c1', 'd2', 'e1' ], value: 'one' } 
// ]

我们可以随心所欲地塑造结果的输出——

const result =
reduceTree
( (acc, value, path) =>                        // reducer
({ ...acc, [ path .join ('.') ]: value })
, {}                                           // initial state
, input                                        // input tree
)
console.log (result)
// { 'a1.b1.c1.d1.e1': 'one'
// , 'a1.b1.c1.d1.e2': 'two'
// , 'a1.b1.c1.d1.e3': 'three'
// , 'a1.b1.c1.d2.e1': 'one'
// , 'a1.b1.c1.d2.e2': 'two'
// , 'a1.b1.c1.d2.e3': 'three'
// , 'a1.b1.c2.d1.e1': 'one'
// , 'a1.b1.c2.d1.e2': 'two'
// , 'a2.b1.c1.d1.e1': 'one'
// , 'a2.b1.c1.d2.e1': 'one'
// , 'a2.b2.c1.d1.e1': 'one'
// , 'a2.b2.c1.d2.e1': 'one'
// }

我们测试的input应该证明reduceTree适用于各种级别的嵌套 -

test ('better', () => {
const input =
{ a: { b: { c: 1, d: 2 } }, e: 3 }
const expected =
{ 'a.b.c': 1, 'a.b.d': 2, e: 3 }
const result =
reduceTree
( (acc, value, path) =>
({ ...acc, [ path .join ('.') ]: value })
, {}
, input 
)
expect(result).toEqual(expected)
})

最后,验证该程序在下面的浏览器中是否正常工作–

const isObject = x =>
Object (x) === x
const reduce = (proc, state, arr) =>
arr .reduce (proc, state)
const append = (xs, x) =>
xs .concat ([ x ])
const reduceTree = (proc, state, tree, path = []) =>
reduce
( (acc, [ key, value ]) =>
isObject (value)
? reduceTree
( proc
, acc
, value
, append (path, key)
)
: proc
( acc
, value
, append (path, key)
)
, state
, Object.entries (tree)
)
const input =
{ a: { b: { c: 1, d: 2 } }, e: 3 }
const result =
reduceTree
( (acc, value, path) =>
[ ...acc, { path, value } ]
, []
, input
)
console.log (result)
// { 'a.b.c': 1, 'a.b.d': 2, e: 3 }


在一些朋友的帮助下

命令式生成器使此类任务变得轻而易举,同时提供直观的语言来描述预期过程。下面我们添加traverse,为嵌套tree(对象(生成[ path, value ]对 –

const traverse = function* (tree = {}, path = [])
{ for (const [ key, value ] of Object.entries (tree))
if (isObject (value))
yield* traverse (value, append (path, key))
else
yield [ append (path, key), value ]
}

使用Array.from我们可以将发电机直接插入我们现有的功能reduce;reduceTree现在只是一个专业——

const reduceTree = (proc, state, tree) =>
reduce
( (acc, [ path, value ]) =>
proc (acc, value, path)
, state
, Array.from (traverse (tree))
)

通话站点是一样的——

const input =
{ a: { b: { c: 1, d: 2 } }, e: 3 }
const result =
reduceTree
( (acc, value, path) =>
({ ...acc, [ path .join ('.') ]: value })
, {}
, input
)
console.log (result)
// { 'a.b.c': 1, 'a.b.d': 2, e: 3 }

在下面的浏览器中验证结果 –

const isObject = x =>
Object (x) === x
const reduce = (proc, state, arr) =>
arr .reduce (proc, state)
const append = (xs, x) =>
xs .concat ([ x ])
const traverse = function* (tree = {}, path = [])
{ for (const [ key, value ] of Object.entries (tree))
if (isObject (value))
yield* traverse (value, append (path, key))
else
yield [ append (path, key), value ]
}
const reduceTree = (proc, state, tree) =>
reduce
( (acc, [ path, value ]) =>
proc (acc, value, path)
, state
, Array.from (traverse (tree))
)
const input =
{ a: { b: { c: 1, d: 2 } }, e: 3 }
const result =
reduceTree
( (acc, value, path) =>
({ ...acc, [ path .join ('.') ]: value })
, {}
, input
)
console.log (result)
// { 'a.b.c': 1, 'a.b.d': 2, e: 3 }

您可以使用递归,这是这种遍历的理想选择,如下所示:

function traverse(input, acc, path = []) {                       // path will be used internally so you don't need to pass it to get from the outside, thus it has a default value
Object.keys(input).forEach(key => {                          // for each key in the input
let newPath = [...path, key];                            // the new path is the old one + the current key
if(input[key] && typeof input[key] === "object") {       // if the current value (at this path) is an object
traverse(input[key], acc, newPath);                  // traverse it using the current object as input, the same accumulator and the new path
} else {                                                 // otherwise (it's not an object)
if(acc.hasOwnProperty(input[key])) {                 // then check if our accumulator expects this value to be accumulated
acc[input[key]].push(newPath.join('.'));         // if so, add its path to the according array
}
}
});
}
let input = {"a1":{"b1":{"c1":{"d1":{"e1":"one","e2":"two","e3":"three"},"d2":{"e1":"one","e2":"two","e3":"three"}},"c2":{"d1":{"e1":"one","e2":"two"}}}},"a2":{"b1":{"c1":{"d1":{"e1":"one"},"d2":{"e1":"one"}}},"b2":{"c1":{"d1":{"e1":"one"},"d2":{"e1":"one"}}}},"a3":{"b1":{"c1":{}}}};
let acc = { one: [], two: [], three: [] };
traverse(input, acc);
console.log(acc);

我会使用递归生成器函数来解决这个问题

在此示例中,我创建了一个单独的函数childPathsAndValues。在这里,我们实现了关注点分离:此函数不需要知道您将每个路径附加到数组。它只是遍历对象并返回路径/值组合。

function* childPathsAndValues(o) {
for(let k in o) {
if(typeof(o[k]) === 'object') {
	  for(let [childPath, value] of childPathsAndValues(o[k])) {
	      yield [`${k}.${childPath}`, value];
}
} else {
yield [k, o[k]];
}
}
}
const input = {"a1":{"b1":{"c1":{"d1":{"e1":"one","e2":"two","e3":"three"},"d2":{"e1":"one","e2":"two","e3":"three"}},"c2":{"d1":{"e1":"one","e2":"two"}}}},"a2":{"b1":{"c1":{"d1":{"e1":"one"},"d2":{"e1":"one"}}},"b2":{"c1":{"d1":{"e1":"one"},"d2":{"e1":"one"}}}},"a3":{"b1":{"c1":{}}}};

const acc = {};
for(let [path, value] of childPathsAndValues(input)) {
console.log(`${path} = ${value}`);
acc[value] = acc[value] || [];
acc[value].push(path);
}
console.log('*** Final Result ***');
console.log(acc);

正如其他答案所表明的那样,递归是关键; 但是,与其编写和重写改变数据的过程代码,并且需要根据每种情况手动工具,为什么不在需要时使用和重用此函数。

香草Javascript:

import { curry, __ } from 'lodash/fp'
const reduce = require('lodash/fp').reduce.convert({ cap: false })
reduce.placeholder = __

const reduceNested = curry((fn, acc, iter, paths) =>
reduce(
(acc2, curr, key) =>
paths.length === fn.length - 3
? fn(acc2, curr, ...paths, key)
: reduceNested(fn, acc2, curr, [...paths, key]),
acc,
iter
)
)
export default reduceNested

用法:

test('better', () => {
const result = reduceNested(
(acc, curr, a, b, c, d, e) => ({
...acc,
[curr]: [...acc[curr], `${a}.${b}.${c}.${d}.${e}`]
}),
init,
input,
[]
)
expect(result).toEqual(expected)
})

使用不可变.js:

import { curry } from 'lodash/fp'
const reduce = curry((fn, acc, it) => it.reduce(fn, acc))
const reduceNested = curry((fn, acc, iter, paths) =>
reduce(
(acc2, curr, key) =>
paths.size === fn.length - 3
? fn(acc2, curr, ...paths, key)
: reduceNested(fn, acc2, curr, paths.push(key)),
acc,
iter
)
)
export default reduceNested

用法:

test('better', () => {
const result = reduceNested(
(acc, curr, a, b, c, d, e) =>
acc.update(curr, i => i.push(`${a}.${b}.${c}.${d}.${e}`)),
init,
input,
List()
)
expect(result).toEqual(expected)
})

最新更新