sklearn中的流水线问题



我是 sklearn 的新手。我正在使用管道在文本挖掘问题中同时使用矢量化器和分类器。这是我的代码:

def create_ngram_model():
tfidf_ngrams = TfidfVectorizer(ngram_range=(1, 3),
analyzer="word", binary=False)
clf = GaussianNB()
pipeline = Pipeline([('vect', tfidf_ngrams), ('clf', clf)])
return pipeline

def get_trains():
    data=open('../cleaning data/cleaning the sentences/cleaned_comments.csv','r').readlines()[1:]
    lines=len(data)
    features_train=[]
    labels_train=[]
    for i in range(lines):
        l=data[i].split(',')
        labels_train+=[int(l[0])]
        a=l[2]
        features_train+=[a]
    return features_train,labels_train
def train_model(clf_factory,features_train,labels_train):
    features_train,labels_train=get_trains()
    features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(features_train, labels_train, test_size=0.1, random_state=42)
    clf=clf_factory()
    clf.fit(features_train,labels_train)
    pred = clf.predict(features_test)
    accuracy = accuracy_score(pred,labels_test)
    return accuracy
X,Y=get_trains()
print train_model(create_ngram_model,X,Y)

从 get_trains() 返回的特征是字符串。我收到此错误。

clf.fit(features_train,labels_train)
  File "C:Python27libsite-packagessklearnpipeline.py", line 130, in fit
    self.steps[-1][-1].fit(Xt, y, **fit_params)
  File "C:Python27libsite-packagessklearnnaive_bayes.py", line 149, in fit
    X, y = check_arrays(X, y, sparse_format='dense')
  File "C:Python27libsite-packagessklearnutilsvalidation.py", line 263, in check_arrays
    raise TypeError('A sparse matrix was passed, but dense '
TypeError: A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.

我多次遇到此错误。然后,我只是将功能更改为 features_transformed.toarray(),但由于在这里,我使用的是管道,我无法这样做,因为转换后的功能会自动返回。我还尝试创建一个返回 features_transformed.toarray() 的新类,但这也引发了相同的错误。我搜索了很多,但没有得到它。请帮忙!!

有 2 个选项:

  1. 使用稀疏数据兼容分类器。例如,文档说伯努利朴素贝叶斯和多项朴素贝叶斯支持fit的稀疏输入。

  2. 向管道添加"增密器"。显然,你弄错了,这个对我有用(当我需要在此过程中增密我的稀疏数据时):

    class Densifier(object):
        def fit(self, X, y=None):
            pass
        def fit_transform(self, X, y=None):
            return self.transform(X)
        def transform(self, X, y=None):
            return X.toarray()
    

    确保在分类器之前将其放入管道中。

相关内容

  • 没有找到相关文章

最新更新