我有以下代码,使用Keras Scikit-Learn Wrapper,它工作良好:
from keras.models import Sequential
from keras.layers import Dense
from sklearn import datasets
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
import numpy as np
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=4, init='uniform', activation='relu'))
model.add(Dense(6, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def main():
"""
Description of main
"""
iris = datasets.load_iris()
X, y = iris.data, iris.target
NOF_ROW, NOF_COL = X.shape
# evaluate using 10-fold cross validation
seed = 7
np.random.seed(seed)
model = KerasClassifier(build_fn=create_model, nb_epoch=150, batch_size=10, verbose=0)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(model, X, y, cv=kfold)
print(results.mean())
# 0.666666666667
if __name__ == '__main__':
main()
pima-indians-diabetes.data
可在此处下载。
现在我要做的是通过以下方式将值NOF_COL
传递给create_model()
函数的参数
model = KerasClassifier(build_fn=create_model(input_dim=NOF_COL), nb_epoch=150, batch_size=10, verbose=0)
create_model()
函数如下所示:
def create_model(input_dim=None):
# create model
model = Sequential()
model.add(Dense(12, input_dim=input_dim, init='uniform', activation='relu'))
model.add(Dense(6, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
但是它失败了,给出这个错误:
TypeError: __call__() takes at least 2 arguments (1 given)
正确的做法是什么?
可以在KerasClassifier
构造函数中添加input_dim
关键字参数:
model = KerasClassifier(build_fn=create_model, input_dim=5, nb_epoch=150, batch_size=10, verbose=0)
最后一个答案不再有效
另一种选择是从create_model返回一个函数,因为KerasClassifier build_fn期望一个函数:
def create_model(input_dim=None):
def model():
# create model
nn = Sequential()
nn.add(Dense(12, input_dim=input_dim, init='uniform', activation='relu'))
nn.add(Dense(6, init='uniform', activation='relu'))
nn.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return nn
return model
或者更好,根据文档
sk_params接受模型参数和拟合参数。合法的模型参数是build_fn的实参。请注意,与scikit-learn中的所有其他估计器一样,build_fn应该为其参数提供默认值,这样您就可以在不向sk_params
传递任何值的情况下创建估计器。
你可以这样定义你的函数:
def create_model(number_of_features=10): # 10 is the *default value*
# create model
nn = Sequential()
nn.add(Dense(12, input_dim=number_of_features, init='uniform', activation='relu'))
nn.add(Dense(6, init='uniform', activation='relu'))
nn.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return nn
并创建一个包装器:
KerasClassifier(build_fn=create_model, number_of_features=20, epochs=25, batch_size=1000, ...)
要传递参数给build_fn模型,可以将参数传递给__init__()
,然后将其直接传递给model_build_fn
。例如,调用KerasClassifier(myparam=10)
将导致model_build_fn(my_param=10)
这里有一个例子:
class MyMultiOutputKerasRegressor(KerasRegressor):
# initializing
def __init__(self, **kwargs):
KerasRegressor.__init__(self, **kwargs)
# simpler fit method
def fit(self, X, y, **kwargs):
KerasRegressor.fit(self, X, [y]*3, **kwargs)
(…)
def get_quantile_reg_rpf_nn(layers_shape=[50,100,200,100,50], inDim= 4, outDim=1, act='relu'):
# do model stuff...
(…)初始化Keras回归量:
base_model = MyMultiOutputKerasRegressor(build_fn=get_quantile_reg_rpf_nn,
layers_shape=[50,100,200,100,50], inDim= 4,
outDim=1, act='relu', epochs=numEpochs,
batch_size=batch_size, verbose=0)