具有术语频率的 Spark 中的多类分类



我对Apache Spark和MLlib很陌生,正在尝试做我的第一个多类分类模型。我卡在某个时候...这是我的代码:

val input = sc.textFile("cars2.csv").map(line => line.split(";").toSeq)

创建数据框:

val sql = new SQLContext(sc)
val schema = StructType(List(StructField("Description", StringType), StructField("Brand", StringType), StructField("Fuel", StringType)))
val dataframe = sql.createDataFrame(input.map(row => Row(row(0), row(1), row(2))), schema)

我的数据帧如下所示:

+-----------------+----------+------+
|      Description|     Brand|  Fuel|
+-----------------+----------+------+
|  giulietta 1.4TB|alfa romeo|PETROL|
|               4c|alfa romeo|PETROL|
| giulietta 2.0JTD|alfa romeo|DIESEL|
|   Mito 1.4 Tjet |alfa romeo|PETROL|
|     a1 1.4  TFSI|      AUDI|PETROL|
|      a1 1.0 TFSI|      AUDi|PETROL|
|      a3 1.4 TFSI|      AUDI|PETROL|
|      a3 1.2 TFSI|      AUDI|PETROL|
|       a3 2.0 Tdi|      AUDI|DIESEL|
|       a3 1.6 TDi|      AUDI|DIESEL|
|        a3 1.8tsi|      AUDI|PETROL|
|             RS3 |      AUDI|PETROL|
|               S3|      AUDI|PETROL|
|        A4 2.0TDI|      AUDI|DIESEL|
|        A4 2.0TDI|      AUDI|DIESEL|
|      A4 1.4 tfsi|      AUDI|PETROL|
|       A4 2.0TFSI|      AUDI|PETROL|
|        A4 3.0TDI|      AUDI|DIESEL|
|          X5 3.0D|       BMW|DIESEL|
|             750I|       BMW|PETROL|

然后:

//Tokenize
val tokenizer = new Tokenizer().setInputCol("Description").setOutputCol("tokens")
val tokenized = tokenizer.transform(dataframe)
    //Creating term-frequency 
val htf = new HashingTF().setInputCol(tokenizer.getOutputCol).setOutputCol("rawFeatures").setNumFeatures(500)
val tf = htf.transform(tokenized)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")

// Model & Pipeline
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression().setMaxIter(20).setRegParam(0.01)
import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline().setStages(Array(tokenizer, idf, lr))
//Model
val model = pipeline.fit(dataframe)

错误:

java.lang.IllegalArgumentException: Field "rawFeatures" does not exist.

我试图通过仅阅读描述来预测品牌和燃料类型。

提前致谢

代码的两个小问题:

  1. htf变量没有使用,我假设管道中缺少它?由于这是创建下一阶段所需的rawFeatures字段PipelineStage,因此会出现Field does not exist错误。

  2. 即使我们修复了这个问题 - 最后一个阶段(LogisticRegression)也会失败,因为它需要一个 DoubleType 类型的label字段 ,除了features字段。在拟合之前,您需要将此类字段添加到数据帧。

更改代码中的最后几行..

// pipeline - with "htf" stage added
val pipeline = new Pipeline().setStages(Array(tokenizer, htf, idf, lr))
//Model - with an addition (constant...) label field 
val model = pipeline.fit(dataframe.withColumn("label", lit(1.0)))

。将成功完成此完成,但当然这里的标签只是为了示例,请根据需要创建标签。

相关内容

  • 没有找到相关文章

最新更新