我想使用注意力模型来提取注意力得分。但找不到任何要使用的TF2 API。简单代码:
import tensorflow as tf
model = train_model()
func = tf.function(model)
tensor_specs1 = tf.TensorSpec.from_tensor(model.input)
call = func.get_concrete_function(tensor_specs1)
graph = call.graph
tensor_names = [n for n in graph.as_graph_def().node]
for name in tensor_names:
print(name)
outputs = graph.get_tensor_by_name('model_1/word_encoder_time/word_attention/Softmax:0')
pred_model = tf.keras.models.Model(model.input,outputs)
results = pred_model(tensor_specs1)
print(results)
但引发了一个例外:
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("model_1/word_encoder_time/model/word_attention/BiasAdd:0", shape=(?, 10), dtype=float32) is not an element of this graph
它起作用了,但不是我想要的:
outputs = [model.get_layer(name=output).get_output_at(0) for output in output_layers]
pred_model = tf.keras.models.Model(model.input,outputs)
我想要得到中间张量,而不是层的输出。
为了评估Keras
模型中任意层的输出,可以使用Keras函数来避免使用会话和图形。
import tensorflow as tf
print('TensorFlow: ', tf.__version__, end='nn')
input_layer = tf.keras.Input(shape=[100])
x = tf.keras.layers.Dense(16, activation='relu')(input_layer)
x = tf.keras.layers.Dense(64, activation='relu')(x)
x = tf.keras.layers.Dense(32, activation='relu')(x)
x = tf.keras.layers.Dense(10, activation='relu')(x)
output_layer = tf.keras.layers.Dense(5, activation='softmax')(x)
model = tf.keras.Model(inputs=[input_layer], outputs=[output_layer])
a = model.layers[3].output
print(a)
fn = tf.keras.backend.function(input_layer, a) # create a Keras Function
random_input = tf.random.normal([1, 100]) # random noise
a_eval = fn(random_input)
print('nLayer Output:n', a_eval)
输出:
TensorFlow: 2.3.0-dev20200611
Tensor("dense_73/Identity:0", shape=(None, 32), dtype=float32)
Layer Output:
[[0. 0. 0.46475422 0.0961322 0. 0.
0.23016977 0. 0. 0.05861767 0.03298267 0.11953808
0. 0. 0.97043467 0. 0. 0.6384926
0. 0. 0. 0.2346505 0.1822727 0.0145395
0.08411474 0. 0. 0.37601566 0. 0.
0.29435986 0.44069782]]