奇怪的是训练亚历克斯内特



我正在尝试使用AlexNet模型训练数据集。任务是多类分类(15 个类(。我想知道为什么我的准确性很低。我尝试了不同的学习率,但没有提高。

下面是训练的代码段。

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)  
#optimizer = optim.Adam(model.parameters(), lr=1e-2)  # 1e-3, 1e-8
def train_valid_model():
  num_epochs=5
since = time.time()
out_loss = open("history_loss_AlexNet_exp1.txt", "w")
out_acc = open("history_acc_AlexNet_exp1.txt", "w")
losses=[]
ACCes =[]
#losses = {}
for epoch in range(num_epochs):  # loop over the dataset multiple times
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 50)        
    if epoch % 10 == 9:
       torch.save({
        'epoch': epoch + 1,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
         'loss': loss
        }, 'AlexNet_exp1_epoch{}.pth'.format(epoch+1))
    for phase in ['train', 'valid', 'test']:
        if phase == 'train':
            model.train()  
        else:
            model.eval()   
        train_loss = 0.0
        total_train = 0
        correct_train = 0
        for t_image, target, image_path in dataLoaders[phase]:
            #print(t_image.size())
            #print(target)
            t_image = t_image.to(device)
            target = target.to(device)
            optimizer.zero_grad()
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(t_image) 
                outputs = F.softmax(outputs, dim=1)

                loss = criterion(outputs,target)         
                if phase == 'train':
                    loss.backward() 
                    optimizer.step()                           
            _, predicted = torch.max(outputs.data, 1)
            train_loss += loss.item()* t_image.size(0)
            correct_train += (predicted == target).sum().item()
        epoch_loss = train_loss / len(dataLoaders[phase].dataset)
        #losses[phase] = epoch_loss
        losses.append(epoch_loss)
        epoch_acc = 100 * correct_train / len(dataLoaders[phase].dataset) 
        ACCes.append(epoch_acc)
        print('{} Loss: {:.4f} {} Acc: {:.4f}'.format(phase, epoch_loss, phase, epoch_acc))

这是两个纪元的输出

纪元 0/4

列车损失: 2.7026 列车 Acc: 17.2509有效损失: 2.6936 有效账户: 28.7632测试损失: 2.6936 测试累积: 28.7632

纪元 1/4

火车损失: 2.6425 火车 Acc: 17.8019有效损失: 2.6357 有效账户: 28.7632测试损失: 2.6355 测试累积: 28.7632

只是一个基本的提示,它可能会帮助你开始,

import torchvision.models as models
alexnet = models.alexnet(pretrained=True)

使用 alexnet 时,您可以从预训练模型开始,我还没有在您的代码中看到这一点。如果你只需要 15 个类,请确保在最后删除全连接层,并添加具有 15 个输出的新 fc 层,

你的亚历克利克星看起来像这样:

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

因此,您需要仅删除分类器(6(层。我想这里回答了如何删除 fc6。

对于多标签分类,模型中的最后一层应使用 sigmoid 函数进行标签预测,训练过程应使用 binary_crossentropy 函数或nn.BCELoss

相关内容

  • 没有找到相关文章

最新更新