我想将流数据帧转换为普通数据帧以进行大量操作:计数.不同用于实时分析的复杂查询。
如果您对在 Spark 中将流数据帧转换为普通数据帧有任何想法,请提出建议。
我认为最好的选择是编写一个自定义流式接收器,并可以访问addBatch
中每个批次的DataFrame
。
Sink
相当短,所以在这里引用 scaladoc 和代码。
/**
* An interface for systems that can collect the results of a streaming query. In order to preserve
* exactly once semantics a sink must be idempotent in the face of multiple attempts to add the same
* batch.
*/
trait Sink {
/**
* Adds a batch of data to this sink. The data for a given `batchId` is deterministic and if
* this method is called more than once with the same batchId (which will happen in the case of
* failures), then `data` should only be added once.
*
* Note 1: You cannot apply any operators on `data` except consuming it (e.g., `collect/foreach`).
* Otherwise, you may get a wrong result.
*
* Note 2: The method is supposed to be executed synchronously, i.e. the method should only return
* after data is consumed by sink successfully.
*/
def addBatch(batchId: Long, data: DataFrame): Unit
}
另请阅读 StreamSinkProvider。
将流数据帧保存到本地或 kafka。并从本地或 kafka 以批处理模式读取它。