创建一个与CIFAR-10数据集相同格式的数据集



我想创建一个与CIFAR-10数据集相同的数据集,该数据集与TensorFlow一起使用。它应该具有图像和标签。基本上,我希望能够使用CIFAR-10代码,但图像和标签不同,并运行该代码。我还没有找到有关如何在线执行此操作的任何信息,并且是机器学习的全新信息。

我也必须执行此操作,并制作了一堆功能,以将图像和文本文件格式化为tensorflow的可读格式。这是我在一个名为images的文件夹中使用一组图像的修改数字描述了用户在拍摄每个图像时指导机器人的位置)。我发挥了一个函数来生成小型匹配,并创建培训和测试数据集。我还将与每个图像关联的数字转换为单热量向量以适合(如果需要的话,可以使用它,但可能没有用)。

#!/usr/bin/python
import cv2
import numpy as np
import tensorflow as tf
import glob
import re
import random

# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 120
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 1 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
image = np.reshape(np.asarray(mnist.train.images[0]), (28,28))
#Process Images
cv_img = []
for img in glob.glob("./images/*.jpeg"):
    n  = cv2.cvtColor(cv2.resize(cv2.imread(img), (28,28)), cv2.COLOR_BGR2GRAY)
    n = np.asarray(n)
    n = np.reshape(n, n_input)
    cv_img.append(n)
#Process File for angle, here we read the text line by line and make a list
with open("./images/allinfo.txt") as f:
    content = f.readlines()
#Initialize arrays to unpack data file
angle = []
image_number = []

#Iterate through the text list and split each one by the comma separating the values. 
#Turn the text into floats for use in the network
for i in range(len(content)):
    content[i] = content[i][:-1].split(',')
    image_number.append(float(content[i][1]))
    angle.append(float(content[i][7]))
#Divide both angle and image number into test and train data sets
angle = np.atleast_2d(angle).T

##Encode angle into 10 classes (it ranges -1 to 1)
for i in range(len(angle)):
    angle[i] = random.uniform(-1,1)
    angle[i] = int((angle[i]+1.0)*n_classes/2.)

#Create a one-hot version of angle
angle_one_hot = np.zeros((len(angle),n_classes))
for c in range(len(angle)):
    one_hot = np.zeros(n_classes)
    one_hot[int(angle[c])] = 1
    angle_one_hot[c] = one_hot

image_number = np.atleast_2d(image_number).T
test_data =  np.hstack((image_number, angle))
#print test_data
train_percent = .8
train_number = int(len(test_data)*train_percent)
train_data = np.zeros((train_number, 2))
for i in range(train_number):
    rand = random.randrange(0,len(test_data))
    train_data[i] = test_data[rand]
    test_data = np.delete(test_data, rand, 0)
test_data_images = test_data[:,0]
test_data_angles = test_data[:,1]
train_data_images, train_data_angles = train_data[:,0], train_data[:,1]

def gen_batch(angles, images, batch_size, image_array=cv_img):
    indices = random.sample(xrange(0,len(images)), batch_size)
    batch_images = []
    batch_angles = []
 #   print angles
    for i in range(batch_size):
        batch_images.append(image_array[int(images[indices[i]])][:])
        batch_angles.append(angles[indices[i]])
    batch_images = np.asarray(batch_images)
    batch_angles = np.asarray(batch_angles)
    return batch_images, batch_angles

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)

def maxpool2d(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME')

# Create model
def conv_net(x, weights, biases, dropout):
    # Reshape input picture
    x = tf.reshape(x, shape=[-1, 28, 28, 1])
    # Convolution Layer
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = maxpool2d(conv1, k=2)
    # Convolution Layer
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = maxpool2d(conv2, k=2)
    # Fully connected layer
    # Reshape conv2 output to fit fully connected layer input
    fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout
    fc1 = tf.nn.dropout(fc1, dropout)
    # Output, class prediction
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out
# Store layers weight & bias
weights = {
    # 5x5 conv, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
cost = tf.reduce_mean(pred)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize((pred-y)**2)
# Evaluate model
correct_pred = y
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    print(y)
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_x, batch_y = gen_batch(train_data_angles, train_data_images, batch_size)
        #cv2.imshow('trash', batch_x[0,:].reshape((28,28)))
        #cv2.waitKey(0)
        #print(batch_y)
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
        if step % display_step == 0:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                              y: batch_y,
                                                              keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + 
                  "{:.6f}".format(loss) + ", Training Accuracy= " + 
                  "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"
    # Calculate accuracy for all test images
    img, lbls = gen_batch(test_data_angles, test_data_images, len(test_data_angles))
    print "Testing Accuracy:", 
        sess.run(accuracy, feed_dict={x: img,
                                      y: lbls,
                                      keep_prob: 1.})

这不起作用,因为良好的NN(数据未归一化,学习率是两个高,并且培训准确性尚未编程),但图像处理代码可行。

希望这会有所帮助!

CIFAR-10是更大数据集的子集。您需要的图像是缩放的颜色图像,其高度和宽度为32像素,带有三个颜色通道。实现目标的一种方法是首先从CIFAR-100数据集中选择10个不同的标签,从而保存您并运行现有代码。例如,您可能需要选择1辆车和车辆2超类。这将为您提供6000个标记的图像涵盖:自行车,公共汽车,摩托车,皮卡车,火车,割草机,火箭,有轨电车,坦克和拖拉机课程。然后,您可以构建车辆类型的预测指标 - 一种非常酷的方法,可以使机器学习更加熟悉。: - )

在cifar10.py文件中,您可以看到用于从'http:/http://www.cs.toronto.edu/~kriz/cifar-cifar-10-binary-binary.tar.gz'下载的目录。在不更改任何代码的情况下,您可以简单地使用数据更新这些夸大的培训文件。查看/tmp/cifar10_data/cifar-10批次键目录。例如。batches.meta.txt文件包含"二进制版本"部分中所述的标签:https://www.cs.toronto.edu/~kriz/cifar/cifar.html

最新更新