我在"泡菜"中。这是我的代码结构:
- 充当抽象类的基类
- 可以实例化的子类
- 使用
n_jobs=-1
设置参数并调用RandomizedSearchCV
或GridSearchCV
的方法。- 一个局部函数
create_model
,用于创建要由KerasClassifier
或KerasRegressor
调用的神经网络模型(请参阅本教程(
- 一个局部函数
- 使用
我收到一个错误,说本地对象无法腌制。如果我改变n_jobs=1
,那么没有问题。所以我怀疑问题出在本地函数和并行处理上。有解决这个问题的方法吗?谷歌搜索了一下后,似乎序列化程序dill
可以在这里工作(我什至找到了一个名为 multiprocessing_on_dill
的包(。但我目前依靠sklearn
的软件包。
我找到了解决问题的"解决方案"。我真的很困惑为什么这里的示例适用于n_jobs=-1
,但我的代码却不能。似乎问题出在驻留在子类方法中的本地函数create_model
。如果我使本地函数成为子类的方法,我可以设置n_jobs > 1
.
所以回顾一下,这是我的代码结构:
- 充当抽象类的基类
- 可以实例化的子类
- 设置参数并使用
n_jobs=-1
调用RandomizedSearchCV
或GridSearchCV
的方法。 - 一种方法
create_model
,用于创建要由KerasClassifier
或KerasRegressor
调用的神经网络模型
- 设置参数并使用
代码的一般思路:
from abc import ABCMeta
import numpy as np
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
class MLAlgorithms(metaclass=ABCMeta):
def __init__(self, X_train, y_train, X_test, y_test=None):
"""
Constructor with train and test data.
:param X_train: Train descriptor data
:param y_train: Train observed data
:param X_test: Test descriptor data
:param y_test: Test observed data
"""
...
@abstractmethod
def setmlalg(self, mlalg):
"""
Sets a machine learning algorithm.
:param mlalg: Dictionary of the machine learning algorithm.
"""
pass
@abstractmethod
def fitmlalg(self, mlalg, rid=None):
"""
Fits a machine learning algorithm.
:param mlalg: Machine learning algorithm
"""
pass
class MLClassification(MLAlgorithms):
"""
Main class for classification machine learning algorithms.
"""
def setmlalg(self, mlalg):
"""
Sets a classification machine learning algorithm.
:param mlalg: Dictionary of the classification machine learning algorithm.
"""
...
def fitmlalg(self, mlalg):
"""
Fits a classification machine learning algorithm.
:param mlalg: Classification machine learning algorithm
"""
...
# Function to create model, required for KerasClassifier
def create_model(self, n_layers=1, units=10, input_dim=10, output_dim=1,
optimizer="rmsprop", loss="binary_crossentropy",
kernel_initializer="glorot_uniform", activation="sigmoid",
kernel_regularizer="l2", kernel_regularizer_weight=0.01,
lr=0.01, momentum=0.0, decay=0.0, nesterov=False, rho=0.9, epsilon=1E-8,
beta_1=0.9, beta_2=0.999, schedule_decay=0.004):
from keras.models import Sequential
from keras.layers import Dense
from keras import regularizers, optimizers
# Create model
if kernel_regularizer.lower() == "l1":
kernel_regularizer = regularizers.l1(l=kernel_regularizer_weight)
elif kernel_regularizer.lower() == "l2":
kernel_regularizer = regularizers.l2(l=kernel_regularizer_weight)
elif kernel_regularizer.lower() == "l1_l2":
kernel_regularizer = regularizers.l1_l2(l1=kernel_regularizer_weight, l2=kernel_regularizer_weight)
else:
print("Warning: Kernel regularizer {0} not supported. Using default 'l2' regularizer.".format(
kernel_regularizer))
kernel_regularizer = regularizers.l2(l=kernel_regularizer_weight)
if optimizer.lower() == "sgd":
optimizer = optimizers.sgd(lr=lr, momentum=momentum, decay=decay, nesterov=nesterov)
elif optimizer.lower() == "rmsprop":
optimizer = optimizers.rmsprop(lr=lr, rho=rho, epsilon=epsilon, decay=decay)
elif optimizer.lower() == "adagrad":
optimizer = optimizers.adagrad(lr=lr, epsilon=epsilon, decay=decay)
elif optimizer.lower() == "adadelta":
optimizer = optimizers.adadelta(lr=lr, rho=rho, epsilon=epsilon, decay=decay)
elif optimizer.lower() == "adam":
optimizer = optimizers.adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=decay)
elif optimizer.lower() == "adamax":
optimizer = optimizers.adamax(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=decay)
elif optimizer.lower() == "nadam":
optimizer = optimizers.nadam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon,
schedule_decay=schedule_decay)
else:
print("Warning: Optimizer {0} not supported. Using default 'sgd' optimizer.".format(optimizer))
optimizer = "sgd"
model = Sequential()
model.add(
Dense(units=units, input_dim=input_dim,
kernel_initializer=kernel_initializer, activation=activation,
kernel_regularizer=kernel_regularizer))
for layer_count in range(n_layers - 1):
model.add(
Dense(units=units, kernel_initializer=kernel_initializer, activation=activation,
kernel_regularizer=kernel_regularizer))
model.add(Dense(units=output_dim,
kernel_initializer=kernel_initializer, activation=activation,
kernel_regularizer=kernel_regularizer))
# Compile model
model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])
return model
class MLRegression(MLAlgorithms):
"""
Main class for regression machine learning algorithms.
"""
...
我可以确认在 jupyter notebook/ipython 中的 Windows 上的 kerasClassifier 模型上运行具有并行化 (n_jobs>1( 的 kerasClassifier 模型时同样的问题(在 Unix 上没有问题(。
我通过将导致 pickle 问题的 create_model 函数放入模块中并导入模块而不是在环境中定义函数来解决此问题。
要为 Python 创建一个简单的模块,
- 在运行主代码的同一文件夹中创建一个文本文件,并将其另存为my_module.py
- 将create_model函数的定义放入文件中
- 不要在代码中定义create_model,而是使用
import my_module
导入模块,并使用my_module.create_model()
从模块调用函数