c-汉明码校验奇偶校验



我不确定我是否为我编写的校验奇偶校验位函数正确计算了奇偶校验位。码字为11个字符长,包含4个奇偶校验位和7个数据位。实施看起来不错吗?

void parityCheck(char* codeWord) {
int parity[4] = {0}, i = 0, diffParity[4] = {0}, twoPower = 0, bitSum = 0;
// Stores # of 1's for each parity bit in array.
parity[0] = (codeWord[2] - 48) + (codeWord[4] - 48) + (codeWord[6] - 48) + (codeWord[8] - 48) + (codeWord[10] - 48);
parity[1] = (codeWord[2] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);
parity[2] = (codeWord[4] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48);
parity[3] = (codeWord[8] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);
// Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
for (i = 0; i < 4; i++) {
    twoPower = (int)pow((double)2, i);
    if (parity[i] % 2 == 0)
            parity[i] = 0;
        else
            parity[i] = 1;
        if ((codeWord[twoPower-1] - 48) != parity[i])
            diffParity[i] = 1;
}
// Calculates the location of the error bit.
for (i = 0; i < 4; i++) {
    twoPower = (int)pow((double)2, i);
    bitSum += diffParity[i]*twoPower;
}

// Inverts bit at location of error.
if (bitSum <= 11 && bitSum > 0) {
    if ((codeWord[bitSum-1] - 48)) 
        codeWord[bitSum-1] = '0';
    else
        codeWord[bitSum-1] = '1';
}

实施看起来不错吗?

这在很大程度上取决于你对"好"的衡量。我可以确认它确实完成了任务,所以至少它是正确的。您的代码非常冗长,因此很难检查其正确性。我会做以下事情:

int parity_check(int codeWord) {
  int parity = 0, codeWordBit, bitPos;
  for (bitPos = 1; bitPos <= 11; ++bitPos) {
    codeWordBit = ((codeWord >> (bitPos - 1)) & 1);
    parity ^= bitPos*codeWordBit;
  }
  if (parity != 0) {
    if (parity > 11)
      return -1; // multi-bit error!
    codeWord ^= 1 << (parity - 1);
  }
  return codeWord;
}

我将整个码字视为一个整数,而不是一系列数字字符,这样效率会高得多。

查看维基百科上的表格,我发现该表格的形成了序列1…11的二进制表示。每个码字位都会影响该列中提到的奇偶校验位,所以我取码字位(零或一),乘以该列的位模式,得到该模式或零,然后将其与当前奇偶校验位模式异或。这样做的效果是零码字位不会改变任何东西,而非零码字比特翻转所有相关的奇偶校验位。

必须小心,因为比特模式是基于一的,而使用右移技巧的比特位置是基于零的。所以我必须减去一,然后右移这个量,然后提取最低有效位,以获得codeWordBit

使用我的实现作为参考,我能够(通过完全枚举)验证您的代码是否正常工作。

您的代码在AFAIK中运行良好,因为它通过了我想象的测试用例。采用了一些简化,但OP功能没有改变。为了更容易观看,进行了一些经典的简化。

void parityCheck(char* cW) {
  int parity[4] = { 0 }, i = 0, diffParity[4] = { 0 }, twoPower = 0, bitSum = 0;
  // Stores # of 1's for each parity bit in array.
  parity[0] = (cW[2] - '0') + (cW[4] - '0') + (cW[6] - '0') + (cW[8] - '0') + (cW[10] - '0');
  parity[1] = (cW[2] - '0') + (cW[5] - '0') + (cW[6] - '0') + (cW[9] - '0') + (cW[10] - '0');
  parity[2] = (cW[4] - '0') + (cW[5] - '0') + (cW[6] - '0');
  parity[3] = (cW[8] - '0') + (cW[9] - '0') + (cW[10] - '0');
  // Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
  for (i = 0; i < 4; i++) {
    //twoPower = (int) pow((double) 2, i);
    twoPower = 1 << i;
    //if (parity[i] % 2 == 0) parity[i] = 0; else parity[i] = 1;
    parity[i] &= 1;  // Make 0 even, 1 odd.
    if ((cW[twoPower - 1]-'0') != parity[i])
      diffParity[i] = 1;
  }
  // Calculates the location of the error bit.
  for (i = 0; i < 4; i++) {
    // twoPower = (int) pow((double) 2, i);
    twoPower = 1 << i;
    bitSum += diffParity[i] * twoPower;
  }
  // Inverts bit at location of error.
  if (bitSum <= 11 && bitSum > 0) {
    if ((cW[bitSum - 1]-'0')) 
      cW[bitSum - 1] = '0';
    else
      cW[bitSum - 1] = '1';
  }
}
void TestP(const char * Test) {
  char buf[100];
  strcpy(buf, Test);
  parityCheck(buf);
  printf("'%s' '%s'n", Test, buf);
}

int main(void) {
  TestP("00000000000");
  TestP("10011100101");
  TestP("10100111001");
}

如果OP发布测试模式,这将是有用的。

这是我的实现。它有效。公众可以免费使用。

我使用了缩写词"secded",如"单次纠错,双次错误检测"。如果你想要的话,你可以将其重新连接为"三次错误检测器"。实际上,其中的一小部分是保密的,其余的是Hamming 7,4——但我把这些方法命名为我所做的,当我这样做的时候。

这里的"字符串"不是以NUL结尾的,而是计数的。这段代码摘录自一个用C编写的Python模块。这就是您看到的字符串类型的出处。

这里的一个关键点是意识到只有16个汉明7,4码。我用一些Python代码计算了secded_of_spee(),但不幸的是,我已经没有了。

static const unsigned char secded_of_nibble[] = 
{ 0x0, 0xd2, 0x55, 0x87, 0x99, 0x4b, 0xcc, 0x1e, 0xe1, 0x33, 0xb4, 0x66, 0x78, 0
xaa, 0x2d, 0xff };
int fec_secded_encode_cch_bits(const char * strIn, const int cchIn, char * strOu
t, const int cchOut)
{
    assert( cchIn * 2 == cchOut);
    if( cchIn * 2 != cchOut)
        return 0;
    if (!strIn || !strOut)
        return 0;
    int i;
    for (i = 0; i < cchIn; i ++)
    {
        char in_byte = strIn[i];
        char hi_byte = secded_of_nibble[(in_byte >> 4) & 0xf];
        char lo_byte = secded_of_nibble[in_byte & 0xf];
        strOut[i * 2] = hi_byte;
        strOut[i * 2 + 1] = lo_byte;
    }
    return 1;
}
char bv_H[] = {0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x8};
char val_nibble(char ch)
{
    return ((ch & 0x20) >> 2) | ((ch & 0xE) >> 1);
}
char correct_nibble(char ch)
{
    char nibble = 0;
    int i = 0;
    for (i = 0; i < 8; i++)
    if (ch & (1 << (7-i)))
        nibble ^= bv_H[i];
    return nibble;
}
void apply_correct(char nib_correct, char * pbyte, int * pcSec, int *pcDed)
{
    if (0 == nib_correct)
        return;
    if (nib_correct & 0x8)
    {
        (*pcSec) ++;
        int bit = (8 - (nib_correct & 0x7)) & 0x7;
        /*  fprintf(stderr, "bit %d, %02Xn", bit, 1 << bit);*/
        (*pbyte) ^= (1 << bit);
    }
    else
    {
        (*pcDed) ++;
    }
}
int fec_secded_decode_cch_bits
(
    const char * strIn, 
    const int cchIn, 
    char * strOut, 
    const int cchOut,
    int * pcSec,
    int * pcDed
)
{
    assert( cchIn == cchOut *2);
    if( cchIn != cchOut * 2)
        return 0;
    if (!strIn || !strOut)
        return 0;
    int i;
    for (i = 0; i < cchOut; i ++)
    {
        char hi_byte = strIn[i * 2];
        char lo_byte = strIn[i * 2 + 1];

        char hi_correct = correct_nibble(hi_byte);
        char lo_correct = correct_nibble(lo_byte);
        if (hi_correct || lo_correct)
        {
            apply_correct(hi_correct, &hi_byte, pcSec, pcDed);
            apply_correct(lo_correct, &lo_byte, pcSec, pcDed);
/*          fprintf(stderr, "Corrections %x %x.n", hi_correct, lo_correct);*/
        }
        char hi_nibble = val_nibble(hi_byte);
        char lo_nibble = val_nibble(lo_byte);
        strOut[i] = (hi_nibble << 4) | lo_nibble;
    }
    return 1;
}

相关内容

  • 没有找到相关文章

最新更新