我正在Python上开发Spark脚本(使用Pyspark)。我有一个函数,它返回一个带有一些字段的 Ro
w,包括
timestamp=datetime.strptime(processed_data[1], DATI_REGEX)
processed_data[1] 是一个有效的日期时间字符串。
编辑以显示完整代码:
DATI_REGEX = "%Y-%m-%dT%H:%M:%S"
class UserActivity(object):
def __init__(self, user, rows):
self.user = int(user)
self.rows = sorted(rows, key=operator.attrgetter('timestamp'))
def write(self):
return Row(
user=self.user,
timestamp=self.rows[-1].timestamp,
)
def parse_log_line(logline):
try:
entries = logline.split('\t')
processed_data = entries[0].split('t') + entries[1:]
return Row(
ip_address=processed_data[9],
user=int(processed_data[10]),
timestamp=datetime.strptime(processed_data[1], DATI_REGEX),
)
except (IndexError, ValueError):
return None
logFile = sc.textFile(...)
rows = (log_file.map(parse_log_line).filter(None)
.filter(lambda x: current_day <= x.timestamp < next_day))
user_rows = rows.map(lambda x: (x.user, x)).groupByKey()
user_dailies = user_rows.map(lambda x: UserActivity(current_day, x[0], x[1]).write())
当我尝试在PostgreSQL数据库上编写它并执行以下操作时,问题就来了:
fields = [
StructField("user_id", IntegerType(), False),
StructField("timestamp", TimestampType(), False),
]
schema = StructType(fields)
user_dailies_schema = SQLContext(sc).createDataFrame(user_dailies, schema)
user_dailies_schema.write.jdbc(
"jdbc:postgresql:.......",
"tablename")
我收到以下错误:
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 172, in main
process()
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/worker.py", line 167, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 576, in toInternal
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 576, in <genexpr>
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 436, in toInternal
return self.dataType.toInternal(obj)
File "/Users/pau/Downloads/spark-2.0.2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/types.py", line 190, in toInternal
seconds = (calendar.timegm(dt.utctimetuple()) if dt.tzinfo
AttributeError: 'int' object has no attribute 'tzinfo'
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
关于如何解决这个问题的任何想法?
问题相对简单。PySpark Row
是按字段名称排序的tuple
。这意味着当您创建时:
Row(user=self.user, timestamp=self.rows[-1].timestamp)
输出结构的顺序如下:
Row(timestamp, user)
另一方面StructType
按原样排序。因此,您的代码尝试使用用户 ID 作为时间戳。您应该返回一个普通tuple
:
class UserActivity(object):
...
def write(self):
return (self.user, timestamp)
或使用按字典顺序排序的架构:
schema = StructType(sorted(fields, key=operator.attrgetter("name")))
最后,您可以使用namedtuple
来实现属性访问和预定义顺序。
附带说明一下,不要使用这样的groupByKey
。这是使用reduceByKey
的典型情况:
(log_file.map(parse_log_line)
.map(operator.attrgetter("user", "timestamp"))
.reduceByKey(max))
具有多个字段:
from functools import partial
(log_file.map(parse_log_line)
.map(lambda x: (x.user, x))
.reduceByKey(partial(max, key=operator.itemgetter("timestamp")))
.values())
或DataFrame
聚合:
from pyspark.sql import functions as f
(sqlContext
.createDataFrame(
log_file.map(parse_log_line)
# Another way to handle ordering is to choose fields
# before you call createDataFrame
.map(operator.attrgetter("user", "timestamp")),
schema)
.groupBy("user_id")
.agg(f.max("timestamp").alias("timestamp")))
此外,如果要检索SQLContext
则应使用工厂方法:
SQLContext.getOrCreate(sc)
像您一样创建新上下文可能会产生意想不到的副作用。