Chaco:从Chaco图中获取索引和值



我正在开发一个程序,该程序有两个相邻的绘图。第一个绘图具有ZoomTool、PanTool和RangeSelection工具。第二个绘图应根据左侧绘图中所做的更改(缩放等)进行修改。

缩放后是否有可能获得新的索引和值?在进行范围选择后,如何获得新的索引范围?该索引也可以是右侧绘图的新索引,直到不再选择所选零件为止。

我会把我的代码贴在下面,但你也可以在这里看到

这是我的代码:

#=================================================
# Code
#=================================================
# Enthought library imports
from traits.api import HasTraits, Int, Instance
from traits.api import *
from traitsui.api import Item, View, Group, HGroup, VGroup
from enable.api import Component
from enable.component_editor import ComponentEditor
from traitsui.menu import OKButton, CancelButton
# Chaco imports
from chaco.tools.api import RangeSelection, RangeSelectionOverlay
from chaco.chaco_plot_editor import ChacoPlotEditor, ChacoPlotItem
from chaco.api import Plot, ArrayPlotData, OverlayPlotContainer, create_line_plot, create_scatter_plot, add_default_axes, add_default_grids, PlotAxis, PlotLabel
from chaco.tools.api import PanTool, BroadcasterTool, ZoomTool
# Numpy imports
from numpy import linspace, pi, sin, tan
def main():
    # normally this function gets its values out of other files
    x1 = -2*pi
    x2 = pi
    y1 = 0
    y2 = 2
    uebergabe = {"xlim":[x1,x2], "ylim":[y1,y2], "ranges":[x1,x2]}
    return uebergabe

class Trait(HasTraits):
    plot = Instance(Component)    
    #creates the container
    container = OverlayPlotContainer(padding = 50, fill_padding = True,
                        bgcolor = "lightgray", use_backbuffer=True)
    container2 = OverlayPlotContainer(padding = 50, fill_padding = True,
                        bgcolor = "lightgray", use_backbuffer=True)
    # Traits
    xmin = Float
    xmax = Float
    ymin = Float
    ymax = Float
    rangeXMin = Float
    rangeXMax = Float
    # TraitsUI view
    traits_view = View(Group(
        HGroup(
            VGroup(Item("container", editor = ComponentEditor(), show_label = False)),
            VGroup(Item("container2", editor = ComponentEditor(), show_label = False))),        
        HGroup(Item("xmin"), Item("xmax"), Item("ymin"), Item("ymax"), show_border = True, label = "Plotborders"),
        HGroup(Item("rangeXMin", label="x_min"), Item("rangeXMax", label="x_max"), show_border = True, label="Range of right plot")), 
        buttons = [OKButton, CancelButton], resizable = True, width = 1000, height = 800)
    # Constructor
    def __init__(self):
        super(Trait, self).__init__()
        uebergabe = main()
        # initialize traits
        self.xmin = uebergabe["xlim"][0]
        self.xmax = uebergabe["xlim"][1]
        self.ymin = uebergabe["ylim"][0]
        self.ymax = uebergabe["ylim"][1]
        self.rangeXMin = uebergabe["ranges"][0]
        self.rangeXMin = uebergabe["ranges"][1]

        self._create_Container()

    def _create_Container(self):
        #creating dict of plots and the broadcaster
        plots = {}
        broadcaster = BroadcasterTool()
        #=====================first container===========================
        #first plot
        index = linspace(-2*pi,2*pi,1000)
        plot = create_line_plot((index, sin(index)+0.5), color = "blue", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
        plot.bgcolor = "white"
        plot.border_visible = True
        value_mapper = plot.value_mapper
        index_mapper = plot.index_mapper
        add_default_grids(plot)
        add_default_axes(plot)
        # range selection
        self.rangeselect = RangeSelection(plot, left_button_selects = False, auto_handle_event = False)
        plot.active_tool = self.rangeselect
        plot.overlays.append(RangeSelectionOverlay(component=plot))
        #adds plot to the container
        self.container.add(plot)
        # second plot
        index2 = linspace(-5*pi,4*pi,1000)
        plot = create_line_plot((index2, tan(index2)), color = "black", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
        plot.value_mapper = value_mapper
        value_mapper.range.add(plot.value)
        plot.index_mapper = index_mapper
        index_mapper.range.add(plot.index)
        # Create a pan tool and give it a reference to the plot
        pan = PanTool(plot, drag_button="left")
        broadcaster.tools.append(pan)
        # allows to zoom
        zoom = ZoomTool(plot, tool_mode="box", always_on = False, visible = True)
        plot.overlays.append(zoom)

        #adds plot to the container
        self.container.add(plot)
        # appends broadcaster to the container
        self.container.tools.append(broadcaster)
        # title of the container
        self.container.overlays.append(PlotLabel("left plot", component=self.container, overlay_position = "top"))
        #==============end of first container===========================
        #====================second container===========================
        #first plot2
        index3 = linspace(-10*pi,10*pi,500)
        plot2 = create_scatter_plot((index3, sin(index3)), color = "blue", index_bounds=(self.rangeXMin, self.rangeXMax), value_bounds = (self.ymin, self.ymax))
        plot2.bgcolor = "white"
        plot2.border_visible = True
        plot2.value_mapper = value_mapper # the plot uses the same index and
        plot2.index_mapper = index_mapper # value like the plots of container1
        #value_mapper.range.add(plot2.value)
        #index_mapper.range.add(plot2.index)
        add_default_grids(plot2)
        add_default_axes(plot2)
        #adds plot to the container
        self.container2.add(plot2)
        # title of the container
        self.container2.overlays.append(PlotLabel("right plot", component=self.container, overlay_position = "top"))
        #=============end of second container===========================
gui = Trait()
gui.configure_traits()

您可以使用sync_trait()来同步两个特征之间的值:

self.sync_trait("xmin", index_mapper.range, "_low_value")
self.sync_trait("xmax", index_mapper.range, "_high_value")
self.sync_trait("ymin", value_mapper.range, "_low_value")
self.sync_trait("ymax", value_mapper.range, "_high_value")
self.sync_trait("rangeXMin", plot2.index_mapper.range, "low", False)
self.sync_trait("rangeXMax", plot2.index_mapper.range, "high", False)

捕捉范围选择变化:

self.rangeselect.on_trait_change(self.on_selection_changed, "selection")
def on_selection_changed(self, selection):
    if selection != None:
        self.rangeXMin, self.rangeXMax = selection

捕捉轴范围变化:

index_mapper.on_trait_change(self.on_mapper_updated, "updated")
def on_mapper_updated(self, mapper, name, value):
    if not self.rangeselect.selection:
        self.rangeXMin = mapper.range.low
        self.rangeXMax = mapper.range.high

这是完整的代码:

# -*- coding: utf-8 -*-
#=================================================
# Code
#=================================================
# Enthought library imports
from traits.api import HasTraits, Int, Instance
from traits.api import *
from traitsui.api import Item, View, Group, HGroup, VGroup
from enable.api import Component
from enable.component_editor import ComponentEditor
from traitsui.menu import OKButton, CancelButton
# Chaco imports
from chaco.tools.api import RangeSelection, RangeSelectionOverlay
from chaco.chaco_plot_editor import ChacoPlotEditor, ChacoPlotItem
from chaco.api import Plot, ArrayPlotData, OverlayPlotContainer, create_line_plot, create_scatter_plot, add_default_axes, add_default_grids, PlotAxis, PlotLabel
from chaco.tools.api import PanTool, BroadcasterTool, ZoomTool
# Numpy imports
from numpy import linspace, pi, sin, tan
def main():
    # normally this function gets its values out of other files
    x1 = -2*pi
    x2 = pi
    y1 = 0
    y2 = 2
    uebergabe = {"xlim":[x1,x2], "ylim":[y1,y2], "ranges":[x1,x2]}
    return uebergabe

class Trait(HasTraits):
    plot = Instance(Component)    
    #creates the container
    container = OverlayPlotContainer(padding = 50, fill_padding = True,
                        bgcolor = "lightgray", use_backbuffer=True)
    container2 = OverlayPlotContainer(padding = 50, fill_padding = True,
                        bgcolor = "lightgray", use_backbuffer=True)
    # Traits
    xmin = Float
    xmax = Float
    ymin = Float
    ymax = Float
    rangeXMin = Float
    rangeXMax = Float
    # TraitsUI view
    traits_view = View(Group(
        HGroup(
            VGroup(Item("container", editor = ComponentEditor(), show_label = False)),
            VGroup(Item("container2", editor = ComponentEditor(), show_label = False))),        
        HGroup(Item("xmin"), Item("xmax"), Item("ymin"), Item("ymax"), show_border = True, label = "Plotborders"),
        HGroup(Item("rangeXMin", label="x_min"), Item("rangeXMax", label="x_max"), show_border = True, label="Range of right plot")), 
        buttons = [OKButton, CancelButton], resizable = True, width = 1000, height = 500)
    # Constructor
    def __init__(self):
        super(Trait, self).__init__()
        uebergabe = main()
        # initialize traits
        self.xmin = uebergabe["xlim"][0]
        self.xmax = uebergabe["xlim"][1]
        self.ymin = uebergabe["ylim"][0]
        self.ymax = uebergabe["ylim"][1]
        self.rangeXMin = uebergabe["ranges"][0]
        self.rangeXMin = uebergabe["ranges"][1]

        self._create_Container()

    def _create_Container(self):
        #creating dict of plots and the broadcaster
        plots = {}
        broadcaster = BroadcasterTool()
        #=====================first container===========================
        #first plot
        index = linspace(-2*pi,2*pi,1000)
        plot = create_line_plot((index, sin(index)+0.5), color = "blue", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
        plot.bgcolor = "white"
        plot.border_visible = True
        value_mapper = plot.value_mapper
        index_mapper = plot.index_mapper
        add_default_grids(plot)
        add_default_axes(plot)
        self.sync_trait("xmin", index_mapper.range, "_low_value")
        self.sync_trait("xmax", index_mapper.range, "_high_value")
        self.sync_trait("ymin", value_mapper.range, "_low_value")
        self.sync_trait("ymax", value_mapper.range, "_high_value")
        # range selection
        self.rangeselect = RangeSelection(plot, left_button_selects = False, auto_handle_event = False)
        plot.active_tool = self.rangeselect
        plot.overlays.append(RangeSelectionOverlay(component=plot))
        self.rangeselect.on_trait_change(self.on_selection_changed, "selection")
        #adds plot to the container
        self.container.add(plot)
        # second plot
        index2 = linspace(-5*pi,4*pi,1000)
        plot = create_line_plot((index2, tan(index2)), color = "black", index_bounds=(self.xmin, self.xmax), value_bounds = (self.ymin, self.ymax))
        plot.value_mapper = value_mapper
        value_mapper.range.add(plot.value)
        plot.index_mapper = index_mapper
        index_mapper.range.add(plot.index)
        # Create a pan tool and give it a reference to the plot
        pan = PanTool(plot, drag_button="left")
        broadcaster.tools.append(pan)
        # allows to zoom
        zoom = ZoomTool(plot, tool_mode="box", always_on = False, visible = True)
        plot.overlays.append(zoom)

        #adds plot to the container
        self.container.add(plot)
        # appends broadcaster to the container
        self.container.tools.append(broadcaster)
        # title of the container
        self.container.overlays.append(PlotLabel("left plot", component=self.container, overlay_position = "top"))
        #==============end of first container===========================
        #====================second container===========================
        #first plot2
        index3 = linspace(-10*pi,10*pi,500)
        plot2 = create_scatter_plot((index3, sin(index3)), color = "blue", index_bounds=(self.rangeXMin, self.rangeXMax), value_bounds = (self.ymin, self.ymax))
        plot2.bgcolor = "white"
        plot2.border_visible = True
        plot2.value_mapper = value_mapper # the plot uses the same index and
        #plot2.index_mapper = index_mapper # value like the plots of container1
        self.sync_trait("rangeXMin", plot2.index_mapper.range, "low", False)
        self.sync_trait("rangeXMax", plot2.index_mapper.range, "high", False)

        plot2.index_mapper.range.low = 0
        plot2.index_mapper.range.high = 2        
        #value_mapper.range.add(plot2.value)
        #index_mapper.range.add(plot2.index)
        add_default_grids(plot2)
        add_default_axes(plot2)
        #adds plot to the container
        self.container2.add(plot2)
        # title of the container
        self.container2.overlays.append(PlotLabel("right plot", component=self.container, overlay_position = "top"))
        index_mapper.on_trait_change(self.on_mapper_updated, "updated")
        #=============end of second container===========================
    def on_mapper_updated(self, mapper, name, value):
        if not self.rangeselect.selection:
            self.rangeXMin = mapper.range.low
            self.rangeXMax = mapper.range.high
    def on_selection_changed(self, selection):
        if selection != None:
            self.rangeXMin, self.rangeXMax = selection
gui = Trait()
gui.configure_traits()

我相信有一种更简单的方法可以实现您想要的:每个Plot对象都有一个range2d属性。如果将第二个range2d设置为指向第一个绘图的range2d,则您已经用半条线完成了工作。下面是一个完整的例子:

class ConnectedRange(HasTraits):
    container = Instance(HPlotContainer)
    traits_view = View(Item('container', editor=ComponentEditor(),
                       show_label=False),
                      width=1000, height=600, resizable=True, title="Connected Range")
    def _container_default(self):
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x = x, y = y)
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue") 
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")
        scatter.tools.append(PanTool(scatter)) 
        scatter.tools.append(ZoomTool(scatter))
        line.tools.append(PanTool(line)) 
        line.tools.append(ZoomTool(line))
        # connect the ranges so that zooming in one zooms in the other
        scatter.range2d = line.range2d
        return HPlotContainer(scatter, line)

相关内容

  • 没有找到相关文章

最新更新