在Python中分析数据(数据帧和嵌套循环)



嗨,我是新手,尝试了解如何在 python 中使用嵌套循环。我试图理解对相同值求和并学会使用 group_by 函数(基于我今天看到的堆栈溢出中的另一个问题(。我想学习pytonic数据帧方式。

现在我想用以下方式总结工作日。我根据场景总结单位,例如:场景 = 1,公司 = A,国家 = 美国,单位 = 人力资源 + 企业客户,总结工作时间 = 65+63 = 128 等。在原始数据之后,我包括了输出应该是什么样子。我不确定这是否也适用于group_by这更像是一种枢轴方式。

我从嵌套循环开始,但在索引日期时遇到问题。因此,我的代码仅按日期逐个日期进行过滤,效率不高,但可以工作。我了解到嵌套循环不足以满足数据帧的需求,但不确定我能走哪条路。代码如下所示:

import pandas as pd
working_date_start = '2017-07-14'
working_date_end = '2017-07-15'
flag_scenario = 0 
Scenario = 0
df = pd.read_csv('C:/Comapny_WorkingHours.csv', encoding='cp1252', sep=';', index_col=None).dropna()
df = df[(df['working_date'] >= working_date_start) & (df['working_date'] < working_date_end) & (df['flag'] == flag_scenario) & (df['Scenario'] >= Scenario)]
pd_date = pd.DatetimeIndex(df['working_date'].values)
df['working_date'] = pd_date
index_data = df.set_index('working_date')
for current_date in index_data.index.unique():
print('calculating date: ' +str(current_date))
for i in range(0, len(df)):
for j in range(i+1, len(df)):
if df.iloc[i]['Scenario'] == df.iloc[j]['Scenario'] and df.iloc[i]['Unit'] != df.iloc[j]['Unit'] and df.iloc[i]['Company'] == 'Company A' and df.iloc[j]['Company'] == 'Company A' and df.iloc[i]['Country'] == 'USA' and df.iloc[j]['Country'] == 'USA':
print(df.iloc[i]['Scenario'], df.iloc[j]['Scenario'])
print(df.iloc[i]['Unit'], df.iloc[j]['Unit']) 

原始数据如下所示:

working_date    flag    Scenario    Working Hours   Country Company Unit
2017-07-14  0   1   65  USA Company A   HR
2017-07-14  0   2   75  USA Company A   HR
2017-07-14  0   3   73  USA Company A   HR
2017-07-14  0   4   66  USA Company A   HR
2017-07-14  0   1   63  USA Company A   Corporate Client
2017-07-14  0   2   51  USA Company A   Corporate Client
2017-07-14  0   3   60  USA Company A   Corporate Client
2017-07-14  0   4   55  USA Company A   Corporate Client
2017-07-14  0   1   71  USA Company A   Controlling
2017-07-14  0   2   45  USA Company A   Controlling
2017-07-14  0   3   76  USA Company A   Controlling
2017-07-14  0   4   62  USA Company A   Controlling
2017-07-14  0   1   57  USA Company A   Corporate Center
2017-07-14  0   2   64  USA Company A   Corporate Center
2017-07-14  0   3   68  USA Company A   Corporate Center
2017-07-14  0   4   69  USA Company A   Corporate Center
2017-07-14  0   1   54  USA Company B   Private and Business Customers
2017-07-14  0   2   62  USA Company B   private and business customers
2017-07-14  0   3   47  USA Company B   private and business customers
2017-07-14  0   4   62  USA Company B   private and business customers
2017-07-14  0   1   45  USA Company B   Marketing
2017-07-14  0   2   78  USA Company B   Marketing
2017-07-14  0   3   59  USA Company B   Marketing
2017-07-14  0   4   78  USA Company B   Marketing
2017-07-14  0   1   49  USA Company B   IT
2017-07-14  0   2   74  USA Company B   IT
2017-07-14  0   3   78  USA Company B   IT
2017-07-14  0   4   55  USA Company B   IT
2017-07-14  0   1   66  USA Company B   Project Management
2017-07-14  0   2   76  USA Company B   Project Management
2017-07-14  0   3   53  USA Company B   Project Management
2017-07-14  0   4   58  USA Company B   Project Management
2017-07-15  0   1   56  USA Company A   HR
2017-07-15  0   2   54  USA Company A   HR
2017-07-15  0   3   77  USA Company A   HR
2017-07-15  0   4   58  USA Company A   HR
2017-07-15  0   1   78  USA Company A   Corporate Client
2017-07-15  0   2   76  USA Company A   Corporate Client
2017-07-15  0   3   59  USA Company A   Corporate Client
2017-07-15  0   4   56  USA Company A   Corporate Client
2017-07-15  0   1   57  USA Company A   Controlling
2017-07-15  0   2   54  USA Company A   Controlling
2017-07-15  0   3   56  USA Company A   Controlling
2017-07-15  0   4   74  USA Company A   Controlling
2017-07-15  0   1   71  USA Company A   Corporate Center
2017-07-15  0   2   75  USA Company A   Corporate Center
2017-07-15  0   3   79  USA Company A   Corporate Center
2017-07-15  0   4   78  USA Company A   Corporate Center
2017-07-15  0   1   74  USA Company B   Private and Business Customers
2017-07-15  0   2   72  USA Company B   private and business customers
2017-07-15  0   3   66  USA Company B   private and business customers
2017-07-15  0   4   66  USA Company B   private and business customers
2017-07-15  0   1   69  USA Company B   Marketing
2017-07-15  0   2   69  USA Company B   Marketing
2017-07-15  0   3   63  USA Company B   Marketing
2017-07-15  0   4   59  USA Company B   Marketing
2017-07-15  0   1   57  USA Company B   IT
2017-07-15  0   2   67  USA Company B   IT
2017-07-15  0   3   77  USA Company B   IT
2017-07-15  0   4   60  USA Company B   IT
2017-07-15  0   1   55  USA Company B   Project Management
2017-07-15  0   2   57  USA Company B   Project Management
2017-07-15  0   3   80  USA Company B   Project Management
2017-07-15  0   4   59  USA Company B   Project Management

我想要的输出如下所示:

working_date    Scenario   Units                                Working Hours Summed Up
2017-07-14      1          HR_Corporate Client                  128
2017-07-14      1          HR_Controlling                       136
2017-07-14      1          HR_Corporate Center                  122
2017-07-14      2          HR_Corporate Client                  126
2017-07-14      2          HR_Controlling                       120
2017-07-14      2          HR_Corporate Center                  139
2017-07-14      3          HR_Corporate Client                  133
2017-07-14      3          HR_Controlling                       149
2017-07-14      3          HR_Corporate Center                  141
2017-07-14      4          HR_Corporate Client                  121
2017-07-14      4          HR_Controlling                       128
2017-07-14      4          HR_Corporate Center                  135
2017-07-14      1          Corporate Client_Controlling         134
2017-07-14      1          Corporate Client_Corporate Center    120
2017-07-14      2          Corporate Client_Controlling          96
2017-07-14      2          Corporate Client_Corporate Center    115
2017-07-14      3          Corporate Client_Controlling         136
2017-07-14      3          Corporate Client_Corporate Center    128
2017-07-14      4          Corporate Client_Controlling         117
2017-07-14      4          Corporate Client_Corporate Center    124
2017-07-14      1          Controlling_Corporate Center         128
2017-07-14      2          Controlling_Corporate Center         109
2017-07-14      3          Controlling_Corporate Center         144
2017-07-14      4          Controlling_Corporate Center         131
import pandas as pd
df = pd.read_csv('C:/Comapny_WorkingHours.csv', encoding='cp1252', sep=';', index_col=None).dropna()
df = df.reset_index(drop=False)
# this will give you the unique combinations of two units
from itertools import combinations 
scenario_list = df['Scenario'].unique().tolist()
# this creates a dict containing the scene and corresponidng units combos
combos_dict = {}
for scene in scenario_list:
units_list = df[df['Scenario'] == scene]['Unit'].unique().tolist()
combos_dict[scene] = list(combinations(units_list, 2))
new_df = pd.DataFrame() 
for key in combos_dict.keys():
# filters the dataframe by the scenario matched in the combo_dict
filter_df = df[df['Scenario'] == key]
for combo in combos_dict[key]:
# itterates through the combo_dict values to create a sub_filter
# that is used to create a new final dataframe 
sub_filter = filter_df[(filter_df['Unit'] == combo[0]) | 
(filter_df['Unit'] == combo[1])] 
sub_df = pd.DataFrame(data=[[sub_filter['working_date'].iloc[0],
key,
'{}_{}'.format(combo[0], combo[1]),
sum(sub_filter['Working Hours'])]],
columns=['working_date',
'Scenario',
'Units',                                
'Working Hours Summed Up'])
# creates a new dataframe with the desired output
new_df = new_df.append(sub_df)

相关内容

  • 没有找到相关文章

最新更新