我有一个复杂的winodwing操作,我在pyspark中需要帮助。
我有一些由src
和dest
分组的数据,我需要为每个组做以下操作: - 仅在 socket2
中选择数量的行,不出现在socket1
中(对于此组中的所有行) - 应用该过滤标准后, amounts
字段中的总和
amounts src dest socket1 socket2
10 1 2 A B
11 1 2 B C
12 1 2 C D
510 1 2 C D
550 1 2 B C
500 1 2 A B
80 1 3 A B
我想以以下方式汇总:
512 10 = 522,而80是src = 1的唯一记录,dENT = 3
amounts src dest
522 1 2
80 1 3
我从这里借了示例数据:如何在多列上编写pyspark udaf?
您可以将数据框架分成2个带有socket1
的数据框架,另一个带有socket2
,然后使用leftanti
加入而不是过滤(适用于spark >= 2.0
)。
首先,让我们创建数据框:
df = spark.createDataFrame(
sc.parallelize([
[10,1,2,"A","B"],
[11,1,2,"B","C"],
[12,1,2,"C","D"],
[510,1,2,"C","D"],
[550,1,2,"B","C"],
[500,1,2,"A","B"],
[80,1,3,"A","B"]
]),
["amounts","src","dest","socket1","socket2"]
)
现在要拆分数据框:
spark> = 2.0
df1 = df.withColumnRenamed("socket1", "socket").drop("socket2")
df2 = df.withColumnRenamed("socket2", "socket").drop("socket1")
res = df2.join(df1, ["src", "dest", "socket"], "leftanti")
Spark 1.6
df1 = df.withColumnRenamed("socket1", "socket").drop("socket2").withColumnRenamed("amounts", "amounts1")
df2 = df.withColumnRenamed("socket2", "socket").drop("socket1")
res = df2.join(df1.alias("df1"), ["src", "dest", "socket"], "left").filter("amounts1 IS NULL").drop("amounts1")
最后是聚集:
import pyspark.sql.functions as psf
res.groupBy("src", "dest").agg(
psf.sum("amounts").alias("amounts")
).show()
+---+----+-------+
|src|dest|amounts|
+---+----+-------+
| 1| 3| 80|
| 1| 2| 522|
+---+----+-------+