I2c Slave data PIC MPLAB X



我正在尝试从PIC16F886迁移到PIC18F24K40。在这里,我尝试与DS1307进行PIC18F24K40通信,并将其显示在4段显示器上。我已经在PIC16F886上测试了我的代码,但没有在PIC18F24K40上工作。PIC18F24K40使用MPLAB X ide并创建基于MCC代码配置的I2c c文件和.h文件。有人可以建议我在下面的代码中做错了什么吗

写完后我无法更新时间。

 /**
  Generated Main Source File
  Company:
    Microchip Technology Inc.
  File Name:
    main.c
  Summary:
    This is the main file generated using MPLAB(c) Code Configurator
  Description:
    This header file provides implementations for driver APIs for all modules selected in the GUI.
    Generation Information :
        Product Revision  :  MPLAB(c) Code Configurator - 4.15
        Device            :  PIC18F24K40
        Driver Version    :  2.00
    The generated drivers are tested against the following:
        Compiler          :  XC8 1.35
        MPLAB             :  MPLAB X 3.40
*/
/*
    (c) 2016 Microchip Technology Inc. and its subsidiaries. You may use this
    software and any derivatives exclusively with Microchip products.
    THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
    EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
    WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
    PARTICULAR PURPOSE, OR ITS INTERACTION WITH MICROCHIP PRODUCTS, COMBINATION
    WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
    IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
    INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
    WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
    BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
    FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN
    ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
    THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
    MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE
    TERMS.
*/
#include "mcc_generated_files/mcc.h"
#include "mcc_generated_files/i2c1.h"
uint8_t status;

 #define DS1307_RETRY_MAX  100  // define the retry count
 #define Ds1307_ADDRESS    0xD0 // slave device address
#define RTC_addres 0x68 // RTC slave device address
//static unsigned char readI2C[10], writeI2C[4];
#define buffersize 20
static unsigned char writeBuffer[buffersize]; //Buffer for I2C writing.
static unsigned char readbuffer[buffersize]; // Buffer for I2C reading.
uint8_t second;
uint8_t start_addres;
uint8_t length;
//I2C1_MESSAGE_STATUS w_status;

  uint8_t         sourceData[] = {0x1A, 0x2A, 0x4A, 0x8A,0x1A, 0x2A, 0x4A, 0x8A,0x1A, 0x2A, 0x4A, 0x8A,0x1A, 0x2A, 0x4A, 0x8A}; 
    uint8_t         addressBuffer[] = {0xAB,0x10} ; //Put your address here
    uint8_t         readBuffer[16];
    uint8_t readByte;

# define LED RC7
unsigned int i;
unsigned int count;
unsigned int x;
unsigned short sec;
unsigned short min;
unsigned short hour;
unsigned short date;
unsigned short month;
unsigned short year;
unsigned short day;
unsigned short int temp=0;
unsigned short r_data;
#define Seg1 0x01
#define Seg2 0x02
#define Seg3 0x04
#define Seg4 0x08
#define Seg5 0x10
#define Seg6 0x20

unsigned short int cnt, num,Dgt=0;;
unsigned short int temp1,temp2,temp3;

void Delay(int k)
{
  for(i=0;i<=k;i++);  
}
void Blink_LED()
{
    LED=!LED;
    Delay(10000);
}

    void SetSeg(unsigned short data, unsigned  short segno)
     { 
                    switch(data) 
                    { 
                        case 0: PORTB = 0x3F; break; 
                        case 1: PORTB = 0x06; break; 
                        case 2: PORTB = 0x5B; break; 
                        case 3: PORTB = 0x4F; break; 
                        case 4: PORTB = 0x66; break;
                        case 5: PORTB = 0x6D; break; 
                        case 6: PORTB = 0x7D; break; 
                        case 7: PORTB = 0x07; break;
                        case 8: PORTB = 0x7F; break; 
                        case 9: PORTB = 0x6F; break; 
                        default : PORTB = 0X00; break;
                    } 
             if(segno==1)
                  {
                     PORTA = Seg4; 
                  } 
            if(segno==2)
                  {
                     PORTA = Seg3; 
                  } 
            if(segno==3)
                  {
                     PORTA = Seg2;  
                  } 
            if(segno==4)
                  {
                     PORTA = Seg1;  
                  } 

     }

  unsigned int bcdtodecimal(unsigned int bcd) 
{
    unsigned int decimal;
    decimal = (((bcd & 0xF0) >> 4) * 10) + (bcd & 0x0F);
    return decimal;
}

 void wait_mssp(void)
 {
while(!PIR3bits.SSP1IF);
PIR3bits.SSP1IF =0;
} 

void ds1307_write(unsigned char addr ,unsigned char data)
{
SSP1CON2bits.SEN =1; //Start bit
//SSP1BUF = 0XD0; //slave address(address of ds1307) + write bit
  SSP1BUF =0X68;
SSP1BUF =addr;
SSP1BUF = data; 
SSP1CON2bits.PEN =1; //stop bit
}

unsigned int ds1307_read(unsigned char addr)
{
SSP1CON2bits.RSEN =1;
//SSP1BUF =0XD0; //slave address(address of ds1307) + write bit;
  SSP1BUF =0X68;
SSP1BUF =addr;
SSP1CON2bits.RSEN =1;
//SSP1BUF =0XD1; //slave address(address of ds1307) + read bit;
  SSP1BUF =0X69;
SSP1CON2bits.RCEN =1;
SSP1CON2bits.ACKDT=1;
SSP1CON2bits.ACKEN =1;
SSP1CON2bits.PEN=1;
x = SSP1BUF;
return (x);
}
void SetDateTime()
{
           ds1307_write(0X00,0x03);
             ds1307_write(0X01,0X07);
            ds1307_write(0X02,0X00);
              ds1307_write(0X3,0X01);
            ds1307_write(0X04,0x07);
             ds1307_write(0X5,0X08);
           ds1307_write(0X6,0X08);
}

void GetDateTime()
{
             sec = ds1307_read(0X00);
               sec=bcdtodecimal(sec);
                min = ds1307_read(0X01);
              min = bcdtodecimal(min);
                hour = ds1307_read(0X02);
             hour=bcdtodecimal( hour);
                day= ds1307_read(0X03);
                day = bcdtodecimal(day);
                date= ds1307_read(0X04);
                date=bcdtodecimal(date);
                month= ds1307_read(0X05);
                month = bcdtodecimal( month);
                year= ds1307_read(0X06);
                year=  bcdtodecimal(year);  
}

void Blink_Count()
{
   if(PIR0bits.TMR0IF == 1)
   { 
       PIR0bits.TMR0IF =0;
       count=count+1;
       if(count>=15)
       {
           LED=!LED;
           count=0;
//             SetSeg(min/10,4);
//                  SetSeg(min%10,3); 
//                   SetSeg(sec/ 10,2);
//                    SetSeg(sec%10,1); 
       }
   }
}

void main(void)
{
    // Initialize the device
    SYSTEM_Initialize();
    // If using interrupts in PIC18 High/Low Priority Mode you need to enable the Global High and Low Interrupts
    // If using interrupts in PIC Mid-Range Compatibility Mode you need to enable the Global and Peripheral Interrupts
    // Use the following macros to:
    // Enable high priority global interrupts
    //INTERRUPT_GlobalInterruptHighEnable();
    // Enable low priority global interrupts.
    //INTERRUPT_GlobalInterruptLowEnable();
    // Disable high priority global interrupts
    //INTERRUPT_GlobalInterruptHighDisable();
    // Disable low priority global interrupts.
    //INTERRUPT_GlobalInterruptLowDisable();
    // Enable the Global Interrupts
    //INTERRUPT_GlobalInterruptEnable();
    // Enable the Peripheral Interrupts
    //INTERRUPT_PeripheralInterruptEnable();
    // Disable the Global Interrupts
    //INTERRUPT_GlobalInterruptDisable();
    // Disable the Peripheral Interrupts
    //INTERRUPT_PeripheralInterruptDisable();
   // I2C1_Initialize();

    SSP1CLKPPS = 0x0E;   //RB6->MSSP:SCL;
    SSP1DATPPS = 0x0C;   //RB4->MSSP:SDA;
    RB6PPS = 0x10;   //RB6->MSSP:SCL;
    RB4PPS = 0x11;   //RB4->MSSP:SDA;
      SetDateTime(); 
    while (1)
    {

     GetDateTime();                  
         SetSeg(min/10,4);
                  SetSeg(min%10,3); 
                   SetSeg(sec/ 10,2);
                    SetSeg(sec%10,1);              

    }
}

基于下面的 MCC 代码配置和使用的库。但是我在编写后看不到sec参数更新。

void main(void)
{
    uint8_t second;
    uint8_t start_addres;
    uint8_t length;
    I2C1_MESSAGE_STATUS w_status;
    I2C1_MESSAGE_STATUS r_status;

    // Initialize the device
    SYSTEM_Initialize();

    start_addres = 0; 
    length =12;
    I2C1_MasterWriteTRBBuild( 0X00, length, RTC_addres, &w_status);

    while (1)
    {

    I2C1_MasterReadTRBBuild( &second, length, RTC_addres, &r_status);
     I2C1_MasterRead(&second, length, RTC_addres, &r_status);
    sec=second;
    }

} 

这是在MCC之后创建的I2C1.c文件

typedef union
{
    struct
    {
            uint8_t full:1;
            uint8_t empty:1;
            uint8_t reserved:6;
    }s;
    uint8_t status;
}I2C_TR_QUEUE_STATUS;
/**
  I2C Driver Queue Entry Type
  @Summary
    Defines the object used for an entry in the i2c queue items.
  @Description
    This defines the object in the i2c queue. Each entry is a composed
    of a list of TRBs, the number of the TRBs and the status of the
    currently processed TRB.
 */
typedef struct
{
    uint8_t                             count;          // a count of trb's in the trb list
    I2C1_TRANSACTION_REQUEST_BLOCK *ptrb_list;     // pointer to the trb list
    I2C1_MESSAGE_STATUS            *pTrFlag;       // set with the error of the last trb sent.
                                                        // if all trb's are sent successfully,
                                                        // then this is I2C1_MESSAGE_COMPLETE
} I2C_TR_QUEUE_ENTRY;
/**
  I2C Master Driver Object Type
  @Summary
    Defines the object that manages the i2c master.
  @Description
    This defines the object that manages the sending and receiving of
    i2c master transactions.
  */
typedef struct
{
    /* Read/Write Queue */
    I2C_TR_QUEUE_ENTRY          *pTrTail;       // tail of the queue
    I2C_TR_QUEUE_ENTRY          *pTrHead;       // head of the queue
    I2C_TR_QUEUE_STATUS         trStatus;       // status of the last transaction
    uint8_t                         i2cDoneFlag;    // flag to indicate the current
                                                    // transaction is done
    uint8_t                         i2cErrors;      // keeps track of errors

} I2C_OBJECT ;
/**
  I2C Master Driver State Enumeration
  @Summary
    Defines the different states of the i2c master.
  @Description
    This defines the different states that the i2c master
    used to process transactions on the i2c bus.
*/
typedef enum
{
    S_MASTER_IDLE,
    S_MASTER_RESTART,
    S_MASTER_SEND_ADDR,
    S_MASTER_SEND_DATA,
    S_MASTER_SEND_STOP,
    S_MASTER_ACK_ADDR,
    S_MASTER_RCV_DATA,
    S_MASTER_RCV_STOP,
    S_MASTER_ACK_RCV_DATA,
    S_MASTER_NOACK_STOP,
    S_MASTER_SEND_ADDR_10BIT_LSB,
    S_MASTER_10BIT_RESTART,
} I2C_MASTER_STATES;
/**
 Section: Macro Definitions
*/
/* defined for I2C1 */
#ifndef I2C1_CONFIG_TR_QUEUE_LENGTH
        #define I2C1_CONFIG_TR_QUEUE_LENGTH 1
#endif
#define I2C1_TRANSMIT_REG                       SSP1BUF                 // Defines the transmit register used to send data.
#define I2C1_RECEIVE_REG                        SSP1BUF                 // Defines the receive register used to receive data.
// The following control bits are used in the I2C state machine to manage
// the I2C module and determine next states.
#define I2C1_WRITE_COLLISION_STATUS_BIT         SSP1CON1bits.WCOL     // Defines the write collision status bit.
#define I2C1_MODE_SELECT_BITS                   SSP1CON1bits.SSPM     // I2C Master Mode control bit.
#define I2C1_MASTER_ENABLE_CONTROL_BITS         SSP1CON1bits.SSPEN    // I2C port enable control bit.
#define I2C1_START_CONDITION_ENABLE_BIT         SSP1CON2bits.SEN      // I2C START control bit.
#define I2C1_REPEAT_START_CONDITION_ENABLE_BIT  SSP1CON2bits.RSEN     // I2C Repeated START control bit.
#define I2C1_RECEIVE_ENABLE_BIT                 SSP1CON2bits.RCEN     // I2C Receive enable control bit.
#define I2C1_STOP_CONDITION_ENABLE_BIT          SSP1CON2bits.PEN      // I2C STOP control bit.
#define I2C1_ACKNOWLEDGE_ENABLE_BIT             SSP1CON2bits.ACKEN    // I2C ACK start control bit.
#define I2C1_ACKNOWLEDGE_DATA_BIT               SSP1CON2bits.ACKDT    // I2C ACK data control bit.
#define I2C1_ACKNOWLEDGE_STATUS_BIT             SSP1CON2bits.ACKSTAT  // I2C ACK status bit.
#define I2C1_7bit    true
/**
 Section: Local Functions
*/
void I2C1_FunctionComplete(void);
void I2C1_Stop(I2C1_MESSAGE_STATUS completion_code);
/**
 Section: Local Variables
*/
static I2C_TR_QUEUE_ENTRY                  i2c1_tr_queue[I2C1_CONFIG_TR_QUEUE_LENGTH];
static I2C_OBJECT                          i2c1_object;
static I2C_MASTER_STATES                   i2c1_state = S_MASTER_IDLE;
static uint8_t                                 i2c1_trb_count = 0;
static I2C1_TRANSACTION_REQUEST_BLOCK       *p_i2c1_trb_current = NULL;
static I2C_TR_QUEUE_ENTRY                  *p_i2c1_current = NULL;

/**
  Section: Driver Interface
*/

void I2C1_Initialize(void)
{
    i2c1_object.pTrHead = i2c1_tr_queue;
    i2c1_object.pTrTail = i2c1_tr_queue;
    i2c1_object.trStatus.s.empty = true;
    i2c1_object.trStatus.s.full = false;
    i2c1_object.i2cErrors = 0;
    // SMP Standard Speed; CKE enabled; 
    SSP1STAT = 0xC0;
    // SSPEN enabled; CKP disabled; SSPM FOSC/4_SSPxADD_I2C; 
    SSP1CON1 = 0x28;
    // SBCDE disabled; BOEN disabled; SCIE disabled; PCIE disabled; DHEN disabled; SDAHT 100ns; AHEN disabled; 
    SSP1CON3 = 0x00;
    // Baud Rate Generator Value: SSPADD 2;   
    SSP1ADD = 0x02;

    // clear the master interrupt flag
    PIR3bits.SSP1IF = 0;
    // enable the master interrupt
    PIE3bits.SSP1IE = 1;
}

uint8_t I2C1_ErrorCountGet(void)
{
    uint8_t ret;
    ret = i2c1_object.i2cErrors;
    return ret;
}
void I2C1_ISR ( void )
{
    static uint8_t  *pi2c_buf_ptr;
    static uint16_t i2c_address         = 0;
    static uint8_t  i2c_bytes_left      = 0;
    static uint8_t  i2c_10bit_address_restart = 0;
    PIR3bits.SSP1IF = 0;
    // Check first if there was a collision.
    // If we have a Write Collision, reset and go to idle state */
    if(I2C1_WRITE_COLLISION_STATUS_BIT)
    {
        // clear the Write colision
        I2C1_WRITE_COLLISION_STATUS_BIT = 0;
        i2c1_state = S_MASTER_IDLE;
        *(p_i2c1_current->pTrFlag) = I2C1_MESSAGE_FAIL;
        // reset the buffer pointer
        p_i2c1_current = NULL;
        return;
    }
    /* Handle the correct i2c state */
    switch(i2c1_state)
    {
        case S_MASTER_IDLE:    /* In reset state, waiting for data to send */
            if(i2c1_object.trStatus.s.empty != true)
            {
                // grab the item pointed by the head
                p_i2c1_current     = i2c1_object.pTrHead;
                i2c1_trb_count     = i2c1_object.pTrHead->count;
                p_i2c1_trb_current = i2c1_object.pTrHead->ptrb_list;
                i2c1_object.pTrHead++;
                // check if the end of the array is reached
                if(i2c1_object.pTrHead == (i2c1_tr_queue + I2C1_CONFIG_TR_QUEUE_LENGTH))
                {
                    // adjust to restart at the beginning of the array
                    i2c1_object.pTrHead = i2c1_tr_queue;
                }
                // since we moved one item to be processed, we know
                // it is not full, so set the full status to false
                i2c1_object.trStatus.s.full = false;
                // check if the queue is empty
                if(i2c1_object.pTrHead == i2c1_object.pTrTail)
                {
                    // it is empty so set the empty status to true
                    i2c1_object.trStatus.s.empty = true;
                }
                // send the start condition
                I2C1_START_CONDITION_ENABLE_BIT = 1;
                // start the i2c request
                i2c1_state = S_MASTER_SEND_ADDR;
            }
            break;
        case S_MASTER_RESTART:
            /* check for pending i2c Request */
            // ... trigger a REPEATED START
            I2C1_REPEAT_START_CONDITION_ENABLE_BIT = 1;
            // start the i2c request
            i2c1_state = S_MASTER_SEND_ADDR;
            break;
        case S_MASTER_SEND_ADDR_10BIT_LSB:
            if(I2C1_ACKNOWLEDGE_STATUS_BIT)
            {
                i2c1_object.i2cErrors++;
                I2C1_Stop(I2C1_MESSAGE_ADDRESS_NO_ACK);
            }
            else
            {
                // Remove bit 0 as R/W is never sent here
                I2C1_TRANSMIT_REG = (i2c_address >> 1) & 0x00FF;
                // determine the next state, check R/W
                if(i2c_address & 0x01)
                {
                    // if this is a read we must repeat start
                    // the bus to perform a read
                    i2c1_state = S_MASTER_10BIT_RESTART;
                }
                else
                {
                    // this is a write continue writing data
                    i2c1_state = S_MASTER_SEND_DATA;
                }
            }
            break;
        case S_MASTER_10BIT_RESTART:
            if(I2C1_ACKNOWLEDGE_STATUS_BIT)
            {
                i2c1_object.i2cErrors++;
                I2C1_Stop(I2C1_MESSAGE_ADDRESS_NO_ACK);
            }
            else
            {
                // ACK Status is good
                // restart the bus
                I2C1_REPEAT_START_CONDITION_ENABLE_BIT = 1;
                // fudge the address so S_MASTER_SEND_ADDR works correctly
                // we only do this on a 10-bit address resend
                i2c_address = 0x00F0 | ((i2c_address >> 8) & 0x0006);
                // set the R/W flag
                i2c_address |= 0x0001;
                // set the address restart flag so we do not change the address
                i2c_10bit_address_restart = 1;
                // Resend the address as a read
                i2c1_state = S_MASTER_SEND_ADDR;
            }
            break;
        case S_MASTER_SEND_ADDR:
            /* Start has been sent, send the address byte */
            /* Note: 
                On a 10-bit address resend (done only during a 10-bit
                device read), the original i2c_address was modified in
                S_MASTER_10BIT_RESTART state. So the check if this is
                a 10-bit address will fail and a normal 7-bit address
                is sent with the R/W bit set to read. The flag
                i2c_10bit_address_restart prevents the  address to
                be re-written.
             */
            if(i2c_10bit_address_restart != 1)
            {
                // extract the information for this message
                i2c_address    = p_i2c1_trb_current->address;
                pi2c_buf_ptr   = p_i2c1_trb_current->pbuffer;
                i2c_bytes_left = p_i2c1_trb_current->length;
            }
            // check for 10-bit address
            if(!I2C1_7bit && (0x0 != i2c_address))
            {  
                if (0 == i2c_10bit_address_restart)
                {
                    // we have a 10 bit address
                    // send bits<9:8>
                    // mask bit 0 as this is always a write                    
                    I2C1_TRANSMIT_REG = 0xF0 | ((i2c_address >> 8) & 0x0006);
                    i2c1_state = S_MASTER_SEND_ADDR_10BIT_LSB;
                }
                else
                {
                    // resending address bits<9:8> to trigger read
                    I2C1_TRANSMIT_REG = i2c_address;
                    i2c1_state = S_MASTER_ACK_ADDR;
                    // reset the flag so the next access is ok
                    i2c_10bit_address_restart = 0;
                }
            }
            else
            {
                // Transmit the address
                I2C1_TRANSMIT_REG = i2c_address;
                if(i2c_address & 0x01)
                {
                    // Next state is to wait for address to be acked
                    i2c1_state = S_MASTER_ACK_ADDR;
                }
                else
                {
                    // Next state is transmit
                    i2c1_state = S_MASTER_SEND_DATA;
                }
            }
            break;
        case S_MASTER_SEND_DATA:
            // Make sure the previous byte was acknowledged
            if(I2C1_ACKNOWLEDGE_STATUS_BIT)
            {
                // Transmission was not acknowledged
                i2c1_object.i2cErrors++;
                // Reset the Ack flag
                I2C1_ACKNOWLEDGE_STATUS_BIT = 0;
                // Send a stop flag and go back to idle
                I2C1_Stop(I2C1_DATA_NO_ACK);
            }
            else
            {
                // Did we send them all ?
                if(i2c_bytes_left-- == 0U)
                {
                    // yup sent them all!
                    // update the trb pointer
                    p_i2c1_trb_current++;
                    // are we done with this string of requests?
                    if(--i2c1_trb_count == 0)
                    {
                        I2C1_Stop(I2C1_MESSAGE_COMPLETE);
                    }
                    else
                    {
                        // no!, there are more TRB to be sent.
                        //I2C1_START_CONDITION_ENABLE_BIT = 1;
                        // In some cases, the slave may require
                        // a restart instead of a start. So use this one
                        // instead.
                        I2C1_REPEAT_START_CONDITION_ENABLE_BIT = 1;
                        // start the i2c request
                        i2c1_state = S_MASTER_SEND_ADDR;
                    }
                }
                else
                {
                    // Grab the next data to transmit
                    I2C1_TRANSMIT_REG = *pi2c_buf_ptr++;
                }
            }
            break;
        case S_MASTER_ACK_ADDR:
            /* Make sure the previous byte was acknowledged */
            if(I2C1_ACKNOWLEDGE_STATUS_BIT)
            {
                // Transmission was not acknowledged
                i2c1_object.i2cErrors++;
                // Send a stop flag and go back to idle
                I2C1_Stop(I2C1_MESSAGE_ADDRESS_NO_ACK);
                // Reset the Ack flag
                I2C1_ACKNOWLEDGE_STATUS_BIT = 0;
            }
            else
            {
                I2C1_RECEIVE_ENABLE_BIT = 1;
                i2c1_state = S_MASTER_ACK_RCV_DATA;
            }
            break;
        case S_MASTER_RCV_DATA:
            /* Acknowledge is completed.  Time for more data */
            // Next thing is to ack the data
            i2c1_state = S_MASTER_ACK_RCV_DATA;
            // Set up to receive a byte of data
            I2C1_RECEIVE_ENABLE_BIT = 1;
            break;
        case S_MASTER_ACK_RCV_DATA:
            // Grab the byte of data received and acknowledge it
            *pi2c_buf_ptr++ = I2C1_RECEIVE_REG;
            // Check if we received them all?
            if(--i2c_bytes_left)
            {
                /* No, there's more to receive */
                // No, bit 7 is clear.  Data is ok
                // Set the flag to acknowledge the data
                I2C1_ACKNOWLEDGE_DATA_BIT = 0;
                // Wait for the acknowledge to complete, then get more
                i2c1_state = S_MASTER_RCV_DATA;
            }
            else
            {
                // Yes, it's the last byte.  Don't ack it
                // Flag that we will nak the data
                I2C1_ACKNOWLEDGE_DATA_BIT = 1;
                I2C1_FunctionComplete();
            }
            // Initiate the acknowledge
            I2C1_ACKNOWLEDGE_ENABLE_BIT = 1;
            break;
        case S_MASTER_RCV_STOP:                
        case S_MASTER_SEND_STOP:
            // Send the stop flag
            I2C1_Stop(I2C1_MESSAGE_COMPLETE);
            break;
        default:
            // This case should not happen, if it does then
            // terminate the transfer
            i2c1_object.i2cErrors++;
            I2C1_Stop(I2C1_LOST_STATE);
            break;
    }
}
void I2C1_FunctionComplete(void)
{
    // update the trb pointer
    p_i2c1_trb_current++;
    // are we done with this string of requests?
    if(--i2c1_trb_count == 0)
    {
        i2c1_state = S_MASTER_SEND_STOP;
    }
    else
    {
        i2c1_state = S_MASTER_RESTART;
    }
}
void I2C1_Stop(I2C1_MESSAGE_STATUS completion_code)
{
    // then send a stop
    I2C1_STOP_CONDITION_ENABLE_BIT = 1;
    // make sure the flag pointer is not NULL
    if (p_i2c1_current->pTrFlag != NULL)
    {
        // update the flag with the completion code
        *(p_i2c1_current->pTrFlag) = completion_code;
    }
    // Done, back to idle
    i2c1_state = S_MASTER_IDLE;
}
void I2C1_MasterWrite(
                                uint8_t *pdata,
                                uint8_t length,
                                uint16_t address,
                                I2C1_MESSAGE_STATUS *pflag)
{
    static I2C1_TRANSACTION_REQUEST_BLOCK   trBlock;
    // check if there is space in the queue
    if (i2c1_object.trStatus.s.full != true)
    {
        I2C1_MasterWriteTRBBuild(&trBlock, pdata, length, address);
        I2C1_MasterTRBInsert(1, &trBlock, pflag);
    }
    else
    {
        *pflag = I2C1_MESSAGE_FAIL;
    }
}
void I2C1_MasterRead(
                                uint8_t *pdata,
                                uint8_t length,
                                uint16_t address,
                                I2C1_MESSAGE_STATUS *pflag)
{
    static I2C1_TRANSACTION_REQUEST_BLOCK   trBlock;

    // check if there is space in the queue
    if (i2c1_object.trStatus.s.full != true)
    {
        I2C1_MasterReadTRBBuild(&trBlock, pdata, length, address);
        I2C1_MasterTRBInsert(1, &trBlock, pflag);
    }
    else
    {
        *pflag = I2C1_MESSAGE_FAIL;
    }
}
void I2C1_MasterTRBInsert(
                                uint8_t count,
                                I2C1_TRANSACTION_REQUEST_BLOCK *ptrb_list,
                                I2C1_MESSAGE_STATUS *pflag)
{
    // check if there is space in the queue
    if (i2c1_object.trStatus.s.full != true)
    {
        *pflag = I2C1_MESSAGE_PENDING;
        i2c1_object.pTrTail->ptrb_list = ptrb_list;
        i2c1_object.pTrTail->count     = count;
        i2c1_object.pTrTail->pTrFlag   = pflag;
        i2c1_object.pTrTail++;
        // check if the end of the array is reached
        if (i2c1_object.pTrTail == (i2c1_tr_queue + I2C1_CONFIG_TR_QUEUE_LENGTH))
        {
            // adjust to restart at the beginning of the array
            i2c1_object.pTrTail = i2c1_tr_queue;
        }
        // since we added one item to be processed, we know
        // it is not empty, so set the empty status to false
        i2c1_object.trStatus.s.empty = false;
        // check if full
        if (i2c1_object.pTrHead == i2c1_object.pTrTail)
        {
            // it is full, set the full status to true
            i2c1_object.trStatus.s.full = true;
        }
    }
    else
    {
        *pflag = I2C1_MESSAGE_FAIL;
    }
    // for interrupt based
    if (*pflag == I2C1_MESSAGE_PENDING)
    {
        while(i2c1_state != S_MASTER_IDLE);
        {
            // force the task to run since we know that the queue has
            // something that needs to be sent
            PIR3bits.SSP1IF = true;
        }
    }   // block until request is complete
}
void I2C1_MasterReadTRBBuild(
                                I2C1_TRANSACTION_REQUEST_BLOCK *ptrb,
                                uint8_t *pdata,
                                uint8_t length,
                                uint16_t address)
{
    ptrb->address  = address << 1;
    // make this a read
    ptrb->address |= 0x01;
    ptrb->length   = length;
    ptrb->pbuffer  = pdata;
}
void I2C1_MasterWriteTRBBuild(
                                I2C1_TRANSACTION_REQUEST_BLOCK *ptrb,
                                uint8_t *pdata,
                                uint8_t length,
                                uint16_t address)
{
    ptrb->address = address << 1;
    ptrb->length  = length;
    ptrb->pbuffer = pdata;
}
bool I2C1_MasterQueueIsEmpty(void)
{
    return(i2c1_object.trStatus.s.empty);
}
bool I2C1_MasterQueueIsFull(void)
{
    return(i2c1_object.trStatus.s.full);
}        
void I2C1_BusCollisionISR( void )
{
    // enter bus collision handling code here
}        

/**
 End of File
*/

相关内容

  • 没有找到相关文章

最新更新