示例文档:
{ time: ISODate("2013-10-10T20:55:36Z"), value: 1 }
{ time: ISODate("2013-10-10T22:43:16Z"), value: 2 }
{ time: ISODate("2013-10-11T19:12:66Z"), value: 3 }
{ time: ISODate("2013-10-11T10:15:38Z"), value: 4 }
{ time: ISODate("2013-10-12T04:15:38Z"), value: 5 }
很容易得到按日期分组的聚合结果。但我想要的是查询返回总跑数的结果聚合的,如:
{ time: "2013-10-10" total: 3, runningTotal: 3 }
{ time: "2013-10-11" total: 7, runningTotal: 10 }
{ time: "2013-10-12" total: 5, runningTotal: 15 }
这是可能的MongoDB聚合?
编辑:自MongoDB v5.0以来,首选的方法将是使用Xavier Guihot共享的新的$setWindowFields聚合阶段。
这是你需要的。我对数据中的时间进行了规范化,使它们组合在一起(您可以这样做)。这个想法是$group
,并将time
和total
推入单独的数组。然后$unwind
time
数组,您已经为每个time
文档制作了totals
数组的副本。然后可以从包含不同时间的所有数据的数组中计算runningTotal
(或类似滚动平均值的东西)。$unwind
生成的'index'是time
对应的total
的数组索引。在$unwind
之前使用$sort
是很重要的,因为这可以确保数组的顺序是正确的。
db.temp.aggregate(
[
{
'$group': {
'_id': '$time',
'total': { '$sum': '$value' }
}
},
{
'$sort': {
'_id': 1
}
},
{
'$group': {
'_id': 0,
'time': { '$push': '$_id' },
'totals': { '$push': '$total' }
}
},
{
'$unwind': {
'path' : '$time',
'includeArrayIndex' : 'index'
}
},
{
'$project': {
'_id': 0,
'time': { '$dateToString': { 'format': '%Y-%m-%d', 'date': '$time' } },
'total': { '$arrayElemAt': [ '$totals', '$index' ] },
'runningTotal': { '$sum': { '$slice': [ '$totals', { '$add': [ '$index', 1 ] } ] } },
}
},
]
);
我在一个包含~ 80000个文档的集合上使用了类似的东西,聚合到63个结果。我不确定它在较大集合上的工作效果如何,但我发现,一旦数据减少到可管理的大小,对聚合数据执行转换(投影,数组操作)似乎不会有很大的性能成本。
从Mongo 5
开始,对于新的$setWindowFields
聚合操作符来说,这是一个完美的用例:
// { time: ISODate("2013-10-10T20:55:36Z"), value: 1 }
// { time: ISODate("2013-10-10T22:43:16Z"), value: 2 }
// { time: ISODate("2013-10-11T12:12:66Z"), value: 3 }
// { time: ISODate("2013-10-11T10:15:38Z"), value: 4 }
// { time: ISODate("2013-10-12T05:15:38Z"), value: 5 }
db.collection.aggregate([
{ $group: {
_id: { $dateToString: { format: "%Y-%m-%d", date: "$time" } },
total: { $sum: "$value" }
}},
// e.g.: { "_id" : "2013-10-11", "total" : 7 }
{ $set: { "date": "$_id" } }, { $unset: ["_id"] },
// e.g.: { "date" : "2013-10-11", "total" : 7 }
{ $setWindowFields: {
sortBy: { date: 1 },
output: {
running: {
$sum: "$total",
window: { documents: [ "unbounded", "current" ] }
}
}
}}
])
// { date: "2013-10-11", total: 7, running: 7 }
// { date: "2013-10-10", total: 3, running: 10 }
// { date: "2013-10-12", total: 5, running: 15 }
让我们关注$setWindowFields
阶段:
- 按时间顺序
$sort
s按日期分组的文件:sortBy: { date: 1 }
- 在每个文档中添加
running
字段(output: { running: { ... }}
) - 是
total
s ($sum: "$total"
)的$sum
- 对指定范围的文件(
window
)- 在我们的案例中是任何以前的文档:
window: { documents: [ "unbounded", "current" ] } }
- 由
[ "unbounded", "current" ]
定义,意味着窗口是第一个文档(unbounded
)和当前文档(current
)之间看到的所有文档。
- 在我们的案例中是任何以前的文档:
这是另一种方法
管道db.col.aggregate([
{$group : {
_id : { time :{ $dateToString: {format: "%Y-%m-%d", date: "$time", timezone: "-05:00"}}},
value : {$sum : "$value"}
}},
{$addFields : {_id : "$_id.time"}},
{$sort : {_id : 1}},
{$group : {_id : null, data : {$push : "$$ROOT"}}},
{$addFields : {data : {
$reduce : {
input : "$data",
initialValue : {total : 0, d : []},
in : {
total : {$sum : ["$$this.value", "$$value.total"]},
d : {$concatArrays : [
"$$value.d",
[{
_id : "$$this._id",
value : "$$this.value",
runningTotal : {$sum : ["$$value.total", "$$this.value"]}
}]
]}
}
}
}}},
{$unwind : "$data.d"},
{$replaceRoot : {newRoot : "$data.d"}}
]).pretty()
集合> db.col.find()
{ "_id" : ObjectId("4f442120eb03305789000000"), "time" : ISODate("2013-10-10T20:55:36Z"), "value" : 1 }
{ "_id" : ObjectId("4f442120eb03305789000001"), "time" : ISODate("2013-10-11T04:43:16Z"), "value" : 2 }
{ "_id" : ObjectId("4f442120eb03305789000002"), "time" : ISODate("2013-10-12T03:13:06Z"), "value" : 3 }
{ "_id" : ObjectId("4f442120eb03305789000003"), "time" : ISODate("2013-10-11T10:15:38Z"), "value" : 4 }
{ "_id" : ObjectId("4f442120eb03305789000004"), "time" : ISODate("2013-10-13T02:15:38Z"), "value" : 5 }
结果{ "_id" : "2013-10-10", "value" : 3, "runningTotal" : 3 }
{ "_id" : "2013-10-11", "value" : 7, "runningTotal" : 10 }
{ "_id" : "2013-10-12", "value" : 5, "runningTotal" : 15 }
>
这是一种无需将以前的文档放入新数组然后再处理它们的解决方案。(如果数组太大,那么您可以超过最大BSON文档大小限制,即16MB。)
计算运行总数就像这样简单:
db.collection1.aggregate(
[
{
$lookup: {
from: 'collection1',
let: { date_to: '$time' },
pipeline: [
{
$match: {
$expr: {
$lt: [ '$time', '$$date_to' ]
}
}
},
{
$group: {
_id: null,
summary: {
$sum: '$value'
}
}
}
],
as: 'sum_prev_days'
}
},
{
$addFields: {
sum_prev_days: {
$arrayElemAt: [ '$sum_prev_days', 0 ]
}
}
},
{
$addFields: {
running_total: {
$sum: [ '$value', '$sum_prev_days.summary' ]
}
}
},
{
$project: { sum_prev_days: 0 }
}
]
)
我们所做的:在查找中,我们选择所有具有较小日期时间的文档,并立即计算总和(使用$group作为查找管道的第二步)。$lookup将值放入数组的第一个元素。取出第一个数组元素,然后计算和:当前值+先前值的和。
如果您想将事务分组为天,然后计算运行总数,那么我们需要将$group插入到开始,并将其插入到$lookup的管道中。
db.collection1.aggregate(
[
{
$group: {
_id: {
$substrBytes: ['$time', 0, 10]
},
value: {
$sum: '$value'
}
}
},
{
$lookup: {
from: 'collection1',
let: { date_to: '$_id' },
pipeline: [
{
$group: {
_id: {
$substrBytes: ['$time', 0, 10]
},
value: {
$sum: '$value'
}
}
},
{
$match: {
$expr: {
$lt: [ '$_id', '$$date_to' ]
}
}
},
{
$group: {
_id: null,
summary: {
$sum: '$value'
}
}
}
],
as: 'sum_prev_days'
}
},
{
$addFields: {
sum_prev_days: {
$arrayElemAt: [ '$sum_prev_days', 0 ]
}
}
},
{
$addFields: {
running_total: {
$sum: [ '$value', '$sum_prev_days.summary' ]
}
}
},
{
$project: { sum_prev_days: 0 }
}
]
)
结果是:
{ "_id" : "2013-10-10", "value" : 3, "running_total" : 3 }
{ "_id" : "2013-10-11", "value" : 7, "running_total" : 10 }
{ "_id" : "2013-10-12", "value" : 5, "running_total" : 15 }