我正在尝试使用Scikit-Learn在数据集上使用多个线性回归,但是我在获得正确的系数方面遇到了麻烦。我正在使用Huron湖数据,可以在此处找到:
https://vincentarelbundock.github.io/rdatasets/datasets.html
转换后,我有以下值:
x1 x2 y
0 0.202165 1.706366 0.840567
1 1.706366 0.840567 0.694768
2 0.840567 0.694768 -0.291031
3 0.694768 -0.291031 0.333170
4 -0.291031 0.333170 0.387371
5 0.333170 0.387371 0.811572
6 0.387371 0.811572 1.415773
7 0.811572 1.415773 1.359974
8 1.415773 1.359974 1.504176
9 1.359974 1.504176 1.768377
... ... ... ...
使用
df = pd.DataFrame(nvalues, columns=("x1", "x2", "y"))
result = sm.ols(formula="y ~ x2 + x1", data=df).fit()
print(result.params)
产生
Intercept -0.007852
y2 1.002137
y1 -0.283798
是正确的值,但是如果我最终使用Scikit-learn,我会得到:
a = np.array([nvalues["x1"], nvalues["x2"]])
b = np.array(nvalues["y"])
a = a.reshape(len(nvalues["x1"]), 2)
b = b.reshape(len(nvalues["y"]), 1)
clf = linear_model.LinearRegression()
clf.fit(a, b)
print(clf.coef_)
我得到[[-0.18260922 0.08101687]]
。
有关完整的我的代码
from sklearn import linear_model
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.formula.api as sm
def Main():
location = r"~/Documents/Time Series/LakeHuron.csv"
ts = pd.read_csv(location, sep=",", parse_dates=[0], header=0)
#### initializes the data ####
ts.drop("Unnamed: 0", axis=1, inplace=True)
x = ts["time"].values
y = ts["LakeHuron"].values
x = x.reshape(len(ts), 1)
y = y.reshape(len(ts), 1)
regr = linear_model.LinearRegression()
regr.fit(x, y)
diff = []
for i in range(0, len(ts)):
diff.append(float(ts["LakeHuron"][i]-regr.predict(x)[i]))
ts[3] = diff
nvalues = {"x1": [], "x2": [], "y": []}
for i in range(0, len(ts)-2):
nvalues["x1"].append(float(ts[3][i]))
nvalues["x2"].append(float(ts[3][i+1]))
nvalues["y"].append(float(ts[3][i+2]))
df = pd.DataFrame(nvalues, columns=("x1", "x2", "y"))
result = sm.ols(formula="y ~ x2 + x1", data=df).fit()
print(result.params)
#### using scikit-learn ####
a = np.array([nvalues["x1"], nvalues["x2"]])
b = np.array(nvalues["y"])
a = a.reshape(len(nvalues["x1"]), 2)
b = b.reshape(len(nvalues["y"]), 1)
clf = linear_model.LinearRegression()
clf.fit(a, b)
print(clf.coef_)
if __name__ == "__main__":
Main()
问题是行
a = np.array([nvalues["x1"], nvalues["x2"]])
因为它不会按照您的意图对数据进行排序。相反,它将生成一个数据集
x1_new x2_new
-----------------
x1[0] x1[1]
x1[2] x1[3]
[...]
x1[94] x1[95]
x2[0] x2[1]
[...]
尝试
ax1 = np.array(nvalues["x1"])
ax2 = np.array(nvalues["x2"])
ax1 = ax1.reshape(len(nvalues["x1"]), 1)
ax2 = ax2.reshape(len(nvalues["x2"]), 1)
a = np.hstack([ax1,ax2])
可能有一种更干净的方法可以做到这一点,但是这样它起作用了。回归现在也给出了所有正确的结果。
编辑:清洁方法是使用transpose()
:
a = a.transpose()
根据@orange建议,我将代码更改为我的事物更有效:
#### using scikit-learn ####
a = []
for i in range(0, len(nvalues["x1"])):
a.append([nvalues["x1"][i], nvalues["x2"][i]])
a = np.array(a)
b = np.array(nvalues["y"])
a = a.reshape(len(a), 2)
b = b.reshape(len(nvalues["y"]), 1)
clf = linear_model.LinearRegression()
clf.fit(a, b)
print(clf.coef_)
与Scikit-Learn网站上的示例类似,用于简单回归