我不确定我必须使用哪种流flink变换来计算某些流的平均值并在一个窗口上更新状态(假设它是我的状态的数组)5秒。如果使用RichFlatMapFunction
,我可以计算平均值并更新我的数组状态。但是,我必须致电
streamSource
.keyBy(0)
.flatMap(new MyRichFlatMapFunction())
.print()
,我无法将其写在窗口上。如果我使用
streamSource
.keyBy(0)
.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
.aggregate(new MyAggregateFunction())
.print()
我无法通过ValueState
保持数组状态。
我试图使用RichAggregateFunction
,并且我遇到了此线程的同样问题。使用RichAggregateFunction时的Flink错误是否有其他方法来计算平均水平并跟踪Flink中的另一个状态?
我将如何在Flink中解决这个问题?这是我尝试做的方式,但实际上不起作用> https://github.com/felipegutierrez/explore-flink/blob/master/src/src/main/java/java/org/sense/sense/flink/flink/flink/exmples/exmples/stream/stream/stream/stream/MultiSsormultistationsReadingMqtt2.java#l70
streamStations.filter(new SensorFilter("COUNT_TR"))
.map(new TrainStationMapper())
.keyBy(new MyKeySelector())
.window(TumblingEventTimeWindows.of(Time.seconds(5)));
// THIS AGGREGATE DOES NOT WORK
// .aggregate(new AverageRichAggregator())
// .print();
public static class AverageRichAggregator extends
RichAggregateFunction<Tuple3<Integer, Tuple5<Integer, String, Integer, String, Integer>, Double>, Tuple3<Double, Long, Integer>, Tuple2<String, Double>> {
private static final long serialVersionUID = -40874489412082797L;
private String functionName;
private ValueState<CountMinSketch> countMinSketchState;
@Override
public void open(Configuration parameters) throws Exception {
ValueStateDescriptor<CountMinSketch> descriptor = new ValueStateDescriptor<>("countMinSketchState",
CountMinSketch.class);
this.countMinSketchState = getRuntimeContext().getState(descriptor);
}
@Override
public Tuple3<Double, Long, Integer> createAccumulator() {
this.countMinSketchState.clear();
return new Tuple3<>(0.0, 0L, 0);
}
@Override
public Tuple3<Double, Long, Integer> add(
Tuple3<Integer, Tuple5<Integer, String, Integer, String, Integer>, Double> value,
Tuple3<Double, Long, Integer> accumulator) {
try {
if (value.f1.f1.equals("COUNT_PE")) {
// int count = (int) Math.round(value.f2);
// countMinSketch.updateSketchAsync("COUNT_PE");
} else if (value.f1.f1.equals("COUNT_TI")) {
// int count = (int) Math.round(value.f2);
// countMinSketch.updateSketchAsync("COUNT_TI");
} else if (value.f1.f1.equals("COUNT_TR")) {
// int count = (int) Math.round(value.f2);
// countMinSketch.updateSketchAsync("COUNT_TR");
}
CountMinSketch currentCountMinSketchState = this.countMinSketchState.value();
currentCountMinSketchState.updateSketchAsync(value.f1.f1);
this.countMinSketchState.update(currentCountMinSketchState);
} catch (IOException e) {
e.printStackTrace();
}
return new Tuple3<>(accumulator.f0 + value.f2, accumulator.f1 + 1L, value.f1.f4);
}
@Override
public Tuple2<String, Double> getResult(Tuple3<Double, Long, Integer> accumulator) {
String label = "";
int frequency = 0;
try {
if (functionName.equals("COUNT_PE")) {
label = "PEOPLE average on train station";
// frequency = countMinSketch.getFrequencyFromSketch("COUNT_PE");
} else if (functionName.equals("COUNT_TI")) {
label = "TICKETS average on train station";
// frequency = countMinSketch.getFrequencyFromSketch("COUNT_TI");
} else if (functionName.equals("COUNT_TR")) {
label = "TRAIN average on train station";
// frequency = countMinSketch.getFrequencyFromSketch("COUNT_TR");
}
frequency = this.countMinSketchState.value().getFrequencyFromSketch(functionName);
} catch (IOException e) {
e.printStackTrace();
}
return new Tuple2<>(label + "[" + accumulator.f2 + "] reads[" + frequency + "]",
((double) accumulator.f0) / accumulator.f1);
}
@Override
public Tuple3<Double, Long, Integer> merge(Tuple3<Double, Long, Integer> a, Tuple3<Double, Long, Integer> b) {
return new Tuple3<>(a.f0 + b.f0, a.f1 + b.f1, a.f2);
}
}
错误:
Exception in thread "main" java.lang.UnsupportedOperationException: This aggregation function cannot be a RichFunction.
at org.apache.flink.streaming.api.datastream.WindowedStream.aggregate(WindowedStream.java:692)
at org.sense.flink.examples.stream.MultiSensorMultiStationsReadingMqtt2.<init>(MultiSensorMultiStationsReadingMqtt2.java:71)
at org.sense.flink.App.main(App.java:141)
谢谢
如果可以将聚合器与合并窗口一起使用,则不允许聚集器保持任意状态 - 因为Flink不知道如何合并您的Adhoc状态。
但是您可以将汇总功能与ProcessWindowFunction相结合,例如:
input
.keyBy(<key selector>)
.timeWindow(<duration>)
.aggregate(new MyAggregateFunction(), new MyProcessWindowFunction());
将传递ProcessWindowFunction的过程方法,仅包含预汇总结果,以及提供对全局和每个窗口状态的访问的上下文。希望这将以直接的方式提供您需要的东西。但是,如果您需要在每个到达记录中更新自己的状态,那么您需要扩展聚合器管理的类型以适应。
这是您如何使用全球状态的粗略轮廓:
private static class MyWindowFunction extends ProcessWindowFunction<IN, OUT, KEY, TimeWindow> {
private final static ValueStateDescriptor<Long> myGlobalState =
new ValueStateDescriptor<>("stuff", LongSerializer.INSTANCE);
@Override
public void process(KEY key, Context context, Iterable<IN> values, Collector<OUT> out) {
ValueState<Long> goodStuff = context.globalState().getState(myGlobalState);
}
}