相当于ios的海绵城堡加密



这已经难住了我-下面的代码使用海绵城堡的加密/解密Android -我试图实现跨平台的加密/解密iOS。

以下代码(来自Android)的工作方式,AES 128位CBC与pkcs7填充,使用提供的盐和密码,其中盐存储在mysql数据库中,密码由最终用户,以下代码改编自kelhoer的回答。

我使用AES128bit的原因是AES256在ios4 +中不可用,它是在iOS5+中引入的,并且不得不尝试使用openssl来生成派生密钥和初始化向量(iv),据了解苹果拒绝与openssl库静态链接的应用程序是冒险的。

由于平台是基于iOS 4.2+,采用捆绑和静态链接openssl库似乎有些过火,最好使用CommonCryptor库。

这是带有海绵城堡代码的Android版本:

private static void encrypt(InputStream fin, 
    OutputStream fout, 
    String password, 
    byte[] bSalt) {
    try {
        PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
            new SHA256Digest()
            );
        char[] passwordChars = password.toCharArray();
        final byte[] pkcs12PasswordBytes = 
            PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
        pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
        CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
        ParametersWithIV aesCBCParams = 
            (ParametersWithIV) pGen.generateDerivedParameters(128, 128);
        aesCBC.init(true, aesCBCParams);
        PaddedBufferedBlockCipher aesCipher = 
            new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
        aesCipher.init(true, aesCBCParams);
        byte[] buf = new byte[BUF_SIZE];
        // Read in the decrypted bytes and write the cleartext to out
        int numRead = 0;
        while ((numRead = fin.read(buf)) >= 0) {
            if (numRead == 1024) {
                byte[] plainTemp = new byte[
                    aesCipher.getUpdateOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                final byte[] plain = new byte[offset];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            } else {
                byte[] plainTemp = new byte[aesCipher.getOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset + last];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            }
        }
        fout.close();
        fin.close();
    } catch (Exception e) {
        e.printStackTrace();
    }
}
private static void decrypt(InputStream fin, 
    OutputStream fout, 
    String password, 
    byte[] bSalt) {
    try {
        PKCS12ParametersGenerator pGen = new PKCS12ParametersGenerator(
            new SHA256Digest()
            );
        char[] passwordChars = password.toCharArray();
        final byte[] pkcs12PasswordBytes = 
            PBEParametersGenerator.PKCS12PasswordToBytes(passwordChars);
        pGen.init(pkcs12PasswordBytes, bSalt, ITERATIONS);
        CBCBlockCipher aesCBC = new CBCBlockCipher(new AESEngine());
        ParametersWithIV aesCBCParams = 
            (ParametersWithIV) pGen.generateDerivedParameters(128, 128);
        aesCBC.init(false, aesCBCParams);
        PaddedBufferedBlockCipher aesCipher = 
            new PaddedBufferedBlockCipher(aesCBC, new PKCS7Padding());
        aesCipher.init(false, aesCBCParams);
        byte[] buf = new byte[BUF_SIZE];
        // Read in the decrypted bytes and write the cleartext to out
        int numRead = 0;
        while ((numRead = fin.read(buf)) >= 0) {
            if (numRead == 1024) {
                byte[] plainTemp = new byte[
                    aesCipher.getUpdateOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                // int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            } else {
                byte[] plainTemp = new byte[
                    aesCipher.getOutputSize(numRead)];
                int offset = 
                    aesCipher.processBytes(buf, 0, numRead, plainTemp, 0);
                int last = aesCipher.doFinal(plainTemp, offset);
                final byte[] plain = new byte[offset + last];
                System.arraycopy(plainTemp, 0, plain, 0, plain.length);
                fout.write(plain, 0, plain.length);
            }
        }
        fout.close();
        fin.close();
    } catch (Exception e) {
        e.printStackTrace();
    }
}

然而,在iOS 4.2(与XCode一起工作)我不知道如何做等效的,

这是我在Objective C下尝试的,目的是从Android端解密数据,存储在mysql数据库中,以测试出来:

+(NSData*) decrypt:(NSData*)cipherData 
    userPassword:(NSString*)argPassword 
    genSalt:(NSData*)argPtrSalt{
    size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);
    uint8_t *ptrPlainBuf = malloc(szPlainBufLen);
    //
    const unsigned char *ptrPasswd = 
        (const unsigned char*)[argPassword 
            cStringUsingEncoding:NSASCIIStringEncoding];
    int ptrPasswdLen = strlen(ptrPasswd);
    //
    NSString *ptrSaltStr = [[NSString alloc]
        initWithData:argPtrSalt 
        encoding:NSASCIIStringEncoding];
    const unsigned char *ptrSalt = 
        (const unsigned char *)[ptrSaltStr UTF8String];
    NSString *ptrCipherStr = 
        [[NSString alloc]initWithData:cipherData 
            encoding:NSASCIIStringEncoding];
    unsigned char *ptrCipher = (unsigned char *)[ptrCipherStr UTF8String];
    unsigned char key[kCCKeySizeAES128];
    unsigned char iv[kCCKeySizeAES128];
    //
    //int     EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
    //const unsigned char *salt, const unsigned char *data,
    //int datal, int count, unsigned char *key,unsigned char *iv);
    int i = EVP_BytesToKey(EVP_aes_128_cbc(), 
                       EVP_sha256(), 
                       ptrSalt, 
                       ptrPasswd, 
                       ptrPasswdLen, 
                       PBKDF2_ITERATIONS, 
                       key, 
                       iv);
    NSAssert(i == kCCKeySizeAES128, 
        @"Unable to generate key for AES");
    //
    size_t cipherLen = [cipherData length];
    size_t outlength = 0;
    //
    CCCryptorStatus resultCCStatus = CCCrypt(kCCDecrypt,
                                             kCCAlgorithmAES128,
                                             kCCOptionPKCS7Padding,
                                             key,
                                             kCCBlockSizeAES128,
                                             iv,
                                             ptrCipher,
                                             cipherLen,
                                             ptrPlainBuf,
                                             szPlainBufLen,
                                             &outlength);
    NSAssert(resultCCStatus == kCCSuccess, 
        @"Unable to perform PBE AES128bit decryption: %d", errno);
    NSData *ns_dta_PlainData = nil;
    if (resultCCStatus == kCCSuccess){
        ns_dta_PlainData = 
        [NSData dataWithBytesNoCopy:ptrPlainBuf length:outlength];
    }else{
        return nil;
    }
    return ns_dta_PlainData;
}

已提供数据和用户密码,从CCCrypt得到一个返回码为-4304,表示解码不成功,解码失败。

我想也许编码方案会抛弃CommonCryptor的解密路由,因此转换为NSASCIIStringEncoding的冗长方式。

Salt与密码数据一起存储,长度为32字节。

在这方面我错过了什么,记住,我对密码学很弱。

我冒昧地编写了Android端使用的PKCS12Parameters生成器的直接端口,该头文件的要点在上面。

实现也是直接复制,如这里所见,密码,被转换为PKCS12等效- unicode,大端,在末尾填充两个额外的零。

Generator 通过执行迭代次数生成派生密钥和iv,在本例中为1000,与Android端一样,使用SHA256 Digest,然后使用最终生成的密钥和iv作为CCCryptorCreate的参数。

使用下面的代码示例也不能工作,它在调用CCCryptorFinal

时以-4304结束

代码摘录如下:

#define ITERATIONS 1000
PKCS12ParametersGenerator *pGen = [[PKCS12ParametersGenerator alloc]
        init:argPassword 
        saltedHash:argPtrSalt 
        iterCount:ITERATIONS 
        keySize:128 
        initVectSize:128]; 
//
[pGen generateDerivedParameters];
//
CCCryptorRef decryptor = NULL;
// Create and Initialize the crypto reference.
CCCryptorStatus ccStatus = CCCryptorCreate(kCCDecrypt,
                           kCCAlgorithmAES128,
                           kCCOptionPKCS7Padding,
                           pGen.derivedKey.bytes,
                           kCCKeySizeAES128,
                           pGen.derivedIV.bytes,
                           &decryptor
                           );
NSAssert(ccStatus == kCCSuccess, 
    @"Unable to initialise decryptor!");
//
size_t szPlainBufLen = cipherData.length + (kCCBlockSizeAES128);
// Calculate byte block alignment for all calls through to and including final.
size_t szPtrPlainBufSize = CCCryptorGetOutputLength(decryptor, szPlainBufLen, true);
uint8_t *ptrPlainBuf = calloc(szPtrPlainBufSize, sizeof(uint8_t));
//
// Set up initial size.
size_t remainingBytes = szPtrPlainBufSize;
uint8_t *ptr = ptrPlainBuf;
size_t movedBytes = 0;
size_t totalBytesWritten = 0;
// Actually perform the encryption or decryption.
ccStatus = CCCryptorUpdate(decryptor,
                           (const void *) cipherData.bytes,
                           szPtrPlainBufSize,
                           ptr,
                           remainingBytes,
                           &movedBytes
                           );
NSAssert(ccStatus == kCCSuccess, 
    @"Unable to update decryptor! Error: %d", ccStatus);
ptr += movedBytes;
remainingBytes -= movedBytes;
totalBytesWritten += movedBytes;
//
// Finalize everything to the output buffer.
CCCryptorStatus resultCCStatus = CCCryptorFinal(decryptor,
                          ptr,
                          remainingBytes,
                          &movedBytes
                          );
totalBytesWritten += movedBytes;
if(decryptor) {
    (void) CCCryptorRelease(decryptor);
    decryptor = NULL;
}
NSAssert(resultCCStatus == kCCSuccess, 
    @"Unable to perform PBE AES128bit decryption: %d", resultCCStatus);

有趣的是,解密工作,对CCCryptorFinal的最后调用返回0,如果我在CCCryptorCreate的开始用kCCOptionPKCS7Padding代替0x0000,即没有填充。唉,数据不是我所期望的,仍然完全打乱了,不管什么时候"不工作"。

它在某个地方失败了,所以如果有人有更好的想法,关于如何达到同等的效果,我很高兴听到其他的意见。

它要么改变Android端的机制,使其"跨平台"与iPhone兼容,要么以牺牲用于数据交换可移植性的平台上较弱的加密技术为代价,寻求另一种两端兼容的加密解决方案。

提供的输入数据:

  • Base64编码的密码,盐和密码用':'分隔。tnNhKyJ2vvrUzAmtQV5q9uEwzzAH63sTKtLf4pOQylw=:qTBluA+aNeFnEUfkUFUEVgNYrdz7enn5W1n4Q9uBKYmFfJeSCcbsfziErsa4EU9Cz/pO0KE4WE1QdqRcvSXthQ==
  • 密码为f00b4r
  • 原字符串为The quick brown fox jumped over the lazy dog and ran away

是的,我不得不放弃Android端的加密算法,这是一个挑战,找到一个跨平台兼容的。

我读了很多关于Rob Napier的RNCryptor的文章,然后在谷歌上搜索了一个Android版本,在那里我找到了JNCryptor,我冒险在iOS端使用了RNCryptor。

在github上分叉JNCryptor代码,以增加能够指定自定义设置的增强,并使用海绵城堡,用于旧版本的Android。从那时起,两个平台就可以互换加密/解密了。

我增强JNCryptor的原因是PKDBF2函数的迭代计数太高了——10000,这是默认值(因为代码将在较旧的手机上运行——它会崩溃——如果你有双核/四核的话就太好了!),并且需要重写迭代计数以使其更"可忍受"——1000。在RNCryptor中可以使用自定义设置。

感谢Rob Napier和Duncan Jones的工作!

相关内容

  • 没有找到相关文章

最新更新