IndexError:位置索引器是越界的



我在sklearn cross_validation train_testrongplit模块中使用pandas数据框。

d=pandas.DataFrame({'a':np.random.randn(300),
                    'c':np.array([el for el in np.ones(100)]+
                                 [el for el in np.zeros(200)])})
from sklearn import cross_validation
(X,y)=(d['a'],d['c'])
这是

X_train_and_cv, X_test,y_train_and_cv,y_test = sklearn.cross_validation.train_test_split(X,y,test_size=0.2,random_state=0)
X_train, X_cv,y_train,y_cv = sklearn.cross_validation.train_test_split(X_train_and_cv,y_train_and_cv,test_size=0.2,random_state=0)

为什么这个不行?

X_train_and_cv, X_test,y_train_and_cv,y_test = sklearn.cross_validation.train_test_split(X,y,test_size=0.2,random_state=0,stratify=y)
X_train, X_cv,y_train,y_cv = sklearn.cross_validation.train_test_split(X_train_and_cv,y_train_and_cv,test_size=0.2,random_state=0,stratify=y)
in _is_valid_list_like(self, key, axis)
   1536         l = len(ax)
   1537         if len(arr) and (arr.max() >= l or arr.min() < -l):
-> 1538             raise IndexError("positional indexers are out-of-bounds")
   1539 
   1540         return True
IndexError: positional indexers are out-of-bounds

TL;DR:您对train_test_split的第二次调用使用了与您使用的y不同的stratify数组长度。使用stratify=y_train_and_cv


首先,一个小边注:cross_validation(这里是0.17.1文档)将很快被弃用,您应该使用model_selection.train_test_split (0.18.1)代替。我将导入train_test_split itself以缩短以下内容的长度:

# Same as this in older versions:
# from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split 

X_train_and_cv, X_test,y_train_and_cv,y_test = train_test_split(X,y,
                                                                test_size=0.2,
                                                                random_state=0,
                                                                stratify=y)

y=y_train_and_cv (len=240) stratify=y (len=300)

X_train, X_cv,y_train,y_cv = train_test_split(X_train_and_cv,
                                              y_train_and_cv,
                                              test_size=0.2,
                                              random_state=0,
                                              stratify=y)

替换为:

X_train, X_cv,y_train,y_cv = train_test_split(X_train_and_cv,
                                              y_train_and_cv,
                                              test_size=0.2,
                                              random_state=0,
                                              stratify=y_train_and_cv)

相关内容

  • 没有找到相关文章

最新更新