IndexError:使用scikit learn绘制ROC曲线时,数组的索引太多



我想绘制scikit lern实现的ROC曲线,所以我尝试了以下操作:

from sklearn.metrics import roc_curve, auc
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[:, 1])
roc_auc = auc(false_positive_rate, recall)
plt.title('Receiver Operating Characteristic')
plt.plot(false_positive_rate, recall, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.ylabel('Recall')
plt.xlabel('Fall-out')
plt.show()

这就是输出:

Traceback (most recent call last):
  File "/Users/user/script.py", line 62, in <module>
    false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[:, 1])
IndexError: too many indices for array

然后从之前的一个问题中,我尝试了这个:

false_positive_rate, recall, thresholds = roc_curve(y_test, prediction)

得到了这个回溯:

/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py:705: DeprecationWarning: elementwise comparison failed; this will raise the error in the future.
  not (np.all(classes == [0, 1]) or
/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py:706: DeprecationWarning: elementwise comparison failed; this will raise the error in the future.
  np.all(classes == [-1, 1]) or
Traceback (most recent call last):
  File "/Users/user/PycharmProjects/TESIS_CODE/clasificacion_simple_v1.py", line 62, in <module>
    false_positive_rate, recall, thresholds = roc_curve(y_test, prediction)
  File "/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py", line 890, in roc_curve
    y_true, y_score, pos_label=pos_label, sample_weight=sample_weight)
  File "/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py", line 710, in _binary_clf_curve
    raise ValueError("Data is not binary and pos_label is not specified")
ValueError: Data is not binary and pos_label is not specified

然后我也尝试了这个:

false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[0].values)

这就是回溯:

AttributeError: 'numpy.int64' object has no attribute 'values'

你知道如何正确绘制这个指标吗?。提前感谢!

这是预测变量的形状:

print prediction.shape
(650,)

这是testing_matrix: (650, 9596) 的形状

变量prediction需要是1d array(与y_test的形状相同)。您可以通过检查形状属性进行检查,例如y_test.shape。我认为

prediction[0].values 

返回

AttributeError: 'numpy.int64' object has no attribute 'values'

因为您正试图对预测元素调用CCD_ 6。

更新:

ValueError: Data is not binary and pos_label is not specified

我以前没有注意到这一点。如果你的类不是二进制的,你必须在roc_curve中指定pos_label参数,这样它就可以绘制一个类与其他类的关系。要做到这一点,你需要你的类标签是整数。您可以使用:

from sklearn.preprocessing import LabelEncoder
class_labels = LabelEncoder()
prediction_le = class_lables.fit_transform(prediction)

pediction_le返回类重新编码int

更新2:

您的预测器只返回一个类,因此无法绘制ROC曲线

相关内容

  • 没有找到相关文章

最新更新