如果 NURBS 曲线的控制点已知,如何找到节点矢量



我有一组控制点

pts = [[849, 1181],
       [916, 1257],
       [993, 1305],
       [1082,1270], 
       [1137,1181],
       [1118,1055], 
       [993,1034], 
       [873,1061], 
       [849, 1181]]

我有生成开结向量的逻辑:

/*
Subroutine to generate a B-spline open knot vector with multiplicity
equal to the order at the ends.
c            = order of the basis function
n            = the number of defining polygon vertices
nplus2       = index of x() for the first occurence of the maximum knot       vector value
nplusc       = maximum value of the knot vector -- $n + c$
x()          = array containing the knot vector
*/
knot(n,c,x)
int n,c;
int x[];
{
    int nplusc,nplus2,i;
nplusc = n + c;
nplus2 = n + 2;
x[1] = 0;
    for (i = 2; i <= nplusc; i++){
        if ( (i > c) && (i < nplus2) )
            x[i] = x[i-1] + 1;
    else
            x[i] = x[i-1];

    }
}

另一个用于生成周期节点向量:

/*  Subroutine to generate a B-spline uniform (periodic) knot vector.
c            = order of the basis function
n            = the number of defining polygon vertices
nplus2       = index of x() for the first occurence of the maximum knot vector value
nplusc       = maximum value of the knot vector -- $n + c$
x[]          = array containing the knot vector
*/
#include    <stdio.h>
knotu(n,c,x)
int n,c;
int x[];
{
    int nplusc,nplus2,i;
nplusc = n + c;
nplus2 = n + 2;
x[1] = 0;
for (i = 2; i <= nplusc; i++){
    x[i] = i-1;
}
}

但是,我需要生成 [0,1] 范围内的非均匀结矢量

上述算法产生均匀的结向量。

请建议是否有任何方法可以做到这一点。如果代码是用python编写的,那将是可取

向量(均匀与否(是NURBS曲线定义的一部分。因此,您实际上可以定义自己的非均匀结向量,只要结向量遵循基本规则:

1( # 节点值 = # 控制点 + 顺序

2( 所有节点值必须不递减。即,k[i] <= k[i+1]。

对于具有 9 个控制点的示例,您可以有非均匀结矢量,例如 [0, 0, 0, 0, a, b, c, d, e, 1, 1, 1],其中 0.0 <= b <= c <=d <=e <1.0 对于 3 度 B 样条曲线。当然,为 a、b、c、d 和 e 选择不同的值将导致具有不同形状的曲线。

相关内容

  • 没有找到相关文章

最新更新