rpart的r-结果是根,但数据显示信息增益



我有一个事件率低于3%的数据集(即,大约有700条记录属于1类,27000条记录属于0类)。

ID          V1  V2      V3  V5      V6  Target
SDataID3    161 ONE     1   FOUR    0   0
SDataID4    11  TWO     2   THREE   2   1
SDataID5    32  TWO     2   FOUR    2   0
SDataID7    13  ONE     1   THREE   2   0
SDataID8    194 TWO     2   FOUR    0   0
SDataID10   63  THREE   3   FOUR    0   1
SDataID11   89  ONE     1   FOUR    0   0
SDataID13   78  TWO     2   FOUR    0   0
SDataID14   87  TWO     2   THREE   1   0
SDataID15   81  ONE     1   THREE   0   0
SDataID16   63  ONE     3   FOUR    0   0
SDataID17   198 ONE     3   THREE   0   0
SDataID18   9   TWO     3   THREE   0   0
SDataID19   196 ONE     2   THREE   2   0
SDataID20   189 TWO     2   ONE     1   0
SDataID21   116 THREE   3   TWO     0   0
SDataID24   104 ONE     1   FOUR    0   0
SDataID25   5   ONE     2   ONE     3   0
SDataID28   173 TWO     3   FOUR    0   0
SDataID29   5   ONE     3   ONE     3   0
SDataID31   87  ONE     3   FOUR    3   0
SDataID32   5   ONE     2   THREE   1   0
SDataID34   45  ONE     1   FOUR    0   0
SDataID35   19  TWO     2   THREE   0   0
SDataID37   133 TWO     2   FOUR    0   0
SDataID38   8   ONE     1   THREE   0   0
SDataID39   42  ONE     1   THREE   0   0
SDataID43   45  ONE     1   THREE   1   0
SDataID44   45  ONE     1   FOUR    0   0
SDataID45   176 ONE     1   FOUR    0   0
SDataID46   63  ONE     1   THREE   3   0

我正在尝试使用决策树来找出拆分。但树的结果只有一根。

> library(rpart)
> tree <- rpart(Target ~ ., data=subset(train, select=c( -Record.ID) ),method="class")
> printcp(tree)
Classification tree:
rpart(formula = Target ~ ., data = subset(train, select = c(-Record.ID)), method = "class")
Variables actually used in tree construction:
character(0)
Root node error: 749/18239 = 0.041066
n= 18239 
CP nsplit rel error xerror xstd
1  0      0         1      0    0

在阅读了StackOverflow上的大部分资源后,我放松/调整了控制参数,这给了我想要的决策树。

> tree <- rpart(Target ~ ., data=subset(train, select=c( -Record.ID) ),method="class" ,control =rpart.control(minsplit = 1,minbucket=2, cp=0.00002))
> printcp(tree)
Classification tree:
rpart(formula = Target ~ ., data = subset(train, select = c(-Record.ID)), 
method = "class", control = rpart.control(minsplit = 1, minbucket = 2, 
cp = 2e-05))
Variables actually used in tree construction:
[1] V5         V2                     V1          
[4] V3         V6
Root node error: 749/18239 = 0.041066
n= 18239 
CP nsplit rel error xerror     xstd
1 0.00024275      0   1.00000 1.0000 0.035781
2 0.00019073     20   0.99466 1.0267 0.036235
3 0.00016689     34   0.99199 1.0307 0.036302
4 0.00014835     54   0.98798 1.0334 0.036347
5 0.00002000     63   0.98665 1.0427 0.036504

当我修剪这棵树时,结果是一棵只有一个节点的树。

> pruned.tree <- prune(tree, cp = tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"])
> printcp(pruned.tree)
Classification tree:
rpart(formula = Target ~ ., data = subset(train, select = c(-Record.ID)), 
method = "class", control = rpart.control(minsplit = 1, minbucket = 2, 
cp = 2e-05))
Variables actually used in tree construction:
character(0)
Root node error: 749/18239 = 0.041066
n= 18239 
CP nsplit rel error xerror     xstd
1 0.00024275      0         1      1 0.035781

树不应该只给出根节点,因为从数学上讲,在给定的节点(提供的示例)上,我们得到的是信息增益。我不知道我是否在修剪错误,或者rpart在处理低事件率数据集时存在问题?

NODE    p       1-p     Entropy         Weights         Ent*Weight      # Obs
Node 1  0.032   0.968   0.204324671     0.351398601     0.071799404     10653
Node 2  0.05    0.95    0.286396957     0.648601399     0.185757467     19663
Sum(Ent*wght)       0.257556871 
Information gain    0.742443129 

您提供的数据没有反映两个目标类的比率,所以我调整了数据以更好地反映这一点(请参阅数据部分):

> prop.table(table(train$Target))
0          1 
0.96707581 0.03292419 
> 700/27700
[1] 0.02527076

比例现在相对接近。。。

library(rpart)
tree <- rpart(Target ~ ., data=train, method="class")
printcp(tree)

结果:

Classification tree:
rpart(formula = Target ~ ., data = train, method = "class")
Variables actually used in tree construction:
character(0)
Root node error: 912/27700 = 0.032924
n= 27700 
CP nsplit rel error xerror xstd
1  0      0         1      0    0

现在,您只看到第一个模型的根节点的原因可能是您的目标类极不平衡,因此,您的自变量无法提供足够的信息来生长树。我的样本数据有3.3%的事件率,但你的只有2.5%左右!

正如您所提到的,有一种方法可以强制rpart生长树。即覆盖默认复杂性参数(cp)。复杂性度量是树的大小和树分离目标类的程度的组合。从?rpart.control"不会尝试任何不会将整体不匹配度降低cp因子的分割">。这意味着,在这一点上,您的模型没有在根节点之外进行拆分,从而降低了rpart需要考虑的复杂性级别。我们可以通过设置低或负cp(负cp基本上迫使树生长到其全尺寸)来放宽被认为"足够"的阈值。

tree <- rpart(Target ~ ., data=train, method="class" ,parms = list(split = 'information'), 
control =rpart.control(minsplit = 1,minbucket=2, cp=0.00002))
printcp(tree)

结果:

Classification tree:
rpart(formula = Target ~ ., data = train, method = "class", parms = list(split = "information"), 
control = rpart.control(minsplit = 1, minbucket = 2, cp = 2e-05))
Variables actually used in tree construction:
[1] ID V1 V2 V3 V5 V6
Root node error: 912/27700 = 0.032924
n= 27700 
CP nsplit rel error xerror     xstd
1  4.1118e-04      0   1.00000 1.0000 0.032564
2  3.6550e-04     30   0.98355 1.0285 0.033009
3  3.2489e-04     45   0.97807 1.0702 0.033647
4  3.1328e-04    106   0.95504 1.0877 0.033911
5  2.7412e-04    116   0.95175 1.1031 0.034141
6  2.5304e-04    132   0.94737 1.1217 0.034417
7  2.1930e-04    149   0.94298 1.1458 0.034771
8  1.9936e-04    159   0.94079 1.1502 0.034835
9  1.8275e-04    181   0.93640 1.1645 0.035041
10 1.6447e-04    193   0.93421 1.1864 0.035356
11 1.5664e-04    233   0.92654 1.1853 0.035341
12 1.3706e-04    320   0.91228 1.2083 0.035668
13 1.2183e-04    344   0.90899 1.2127 0.035730
14 9.9681e-05    353   0.90789 1.2237 0.035885
15 2.0000e-05    364   0.90680 1.2259 0.035915

正如您所看到的,树的大小已经将复杂性级别降低了最低cp。需要注意的两件事:

  1. 在零nsplit时,CP已经低至0.0004,其中rpart中的默认cp设置为0.01
  2. nsplit == 0开始,交叉验证错误(xerror)会随着拆分次数的增加而增加

这两种情况都表明您的模型在nsplit == 0及以后的数据中过拟合,因为在模型中添加更多的自变量并不能添加足够的信息(CP减少不足)来减少交叉验证错误。话虽如此,根节点模型在这种情况下是最好的模型,这解释了为什么初始模型只有根节点。

pruned.tree <- prune(tree, cp = tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"])
printcp(pruned.tree)

结果:

Classification tree:
rpart(formula = Target ~ ., data = train, method = "class", parms = list(split = "information"), 
control = rpart.control(minsplit = 1, minbucket = 2, cp = 2e-05))
Variables actually used in tree construction:
character(0)
Root node error: 912/27700 = 0.032924
n= 27700 
CP nsplit rel error xerror     xstd
1 0.00041118      0         1      1 0.032564

至于修剪部分,现在更清楚了为什么修剪后的树是根节点树,因为超过0分割的树会增加交叉验证错误。取具有最小xerror的树将使您得到预期的根节点树。

信息增益基本上告诉你每次拆分增加了多少"信息"。因此,从技术上讲,每个分割都有一定程度的信息增益,因为你在模型中添加了更多的变量(信息增益总是非负的)。你应该考虑的是,额外的增益(或没有增益)是否足以减少错误,从而保证建立一个更复杂的模型。因此,在偏差和方差之间进行权衡。

在这种情况下,减少cp并在以后修剪生成的树是没有意义的。因为通过设置低cp,您告诉rpart即使过度填充也要进行拆分,同时修剪"剪切"所有过度填充的节点。

数据:

请注意,我对每一列和样本的行进行混洗,而不是对行索引进行采样。这是因为你提供的数据可能不是你原始数据集的随机样本(可能有偏差),所以我基本上是用你现有行的组合随机创建新的观察结果,这有望减少偏差。

init_train = structure(list(ID = structure(c(16L, 24L, 29L, 30L, 31L, 1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
17L, 18L, 19L, 20L, 21L, 22L, 23L, 25L, 26L, 27L, 28L), .Label = c("SDataID10", 
"SDataID11", "SDataID13", "SDataID14", "SDataID15", "SDataID16", 
"SDataID17", "SDataID18", "SDataID19", "SDataID20", "SDataID21", 
"SDataID24", "SDataID25", "SDataID28", "SDataID29", "SDataID3", 
"SDataID31", "SDataID32", "SDataID34", "SDataID35", "SDataID37", 
"SDataID38", "SDataID39", "SDataID4", "SDataID43", "SDataID44", 
"SDataID45", "SDataID46", "SDataID5", "SDataID7", "SDataID8"), class = "factor"), 
V1 = c(161L, 11L, 32L, 13L, 194L, 63L, 89L, 78L, 87L, 81L, 
63L, 198L, 9L, 196L, 189L, 116L, 104L, 5L, 173L, 5L, 87L, 
5L, 45L, 19L, 133L, 8L, 42L, 45L, 45L, 176L, 63L), V2 = structure(c(1L, 
3L, 3L, 1L, 3L, 2L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 
1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("ONE", "THREE", "TWO"), class = "factor"), 
V3 = c(1L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 3L, 3L, 3L, 
2L, 2L, 3L, 1L, 2L, 3L, 3L, 3L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L), V5 = structure(c(1L, 3L, 1L, 3L, 1L, 1L, 1L, 
1L, 3L, 3L, 1L, 3L, 3L, 3L, 2L, 4L, 1L, 2L, 1L, 2L, 1L, 3L, 
1L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L), .Label = c("FOUR", "ONE", 
"THREE", "TWO"), class = "factor"), V6 = c(0L, 2L, 2L, 2L, 
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 1L, 0L, 0L, 3L, 0L, 
3L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 3L), Target = c(0L, 
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
)), .Names = c("ID", "V1", "V2", "V3", "V5", "V6", "Target"
), class = "data.frame", row.names = c(NA, -31L))
set.seed(1000)
train = as.data.frame(lapply(init_train, function(x) sample(x, 27700, replace = TRUE)))

相关内容

  • 没有找到相关文章

最新更新