在查看器API中拖动选择对象



在查看器API中,是否可以拖动选择对象?这样我就可以通过拖动而不是每次单击CTRL 来选择多个对象?

我正在实现窗口选择功能作为代码示例的过程。查看本文以获取更多详细信息,并始终关注以下内容...

import Toolkit from 'Viewer.Toolkit'
export default class SelectSet {
  /////////////////////////////////////////////////////////
  //
  //
  /////////////////////////////////////////////////////////
  constructor (viewer) {
    this.viewer = viewer
    this.viewer.impl.createOverlayScene (
      'debug', this.lineMat)
  }
  /////////////////////////////////////////////////////////
  // Set model: required to compute the bounding boxes
  //
  /////////////////////////////////////////////////////////
  async setModel (model) {
    this.model = model
    const instanceTree = model.getData().instanceTree
    const rootId = instanceTree.getRootId()
    const bbox =
      await this.getComponentBoundingBox(
        model, rootId)
    this.boundingSphere = bbox.getBoundingSphere()
    const leafIds = await Toolkit.getLeafNodes (model)
    this.boundingBoxInfo = leafIds.map((dbId) => {
      const bbox = this.getLeafComponentBoundingBox(
        model, dbId)
      return {
        bbox,
        dbId
      }
    })
    console.log(this.boundingBoxInfo)
    console.log(model)
  }
  /////////////////////////////////////////////////////////
  // Returns bounding box as it appears in the viewer
  // (transformations could be applied)
  //
  /////////////////////////////////////////////////////////
  getModifiedWorldBoundingBox (fragIds, fragList) {
    const fragbBox = new THREE.Box3()
    const nodebBox = new THREE.Box3()
    fragIds.forEach(function(fragId) {
      fragList.getWorldBounds(fragId, fragbBox)
      nodebBox.union(fragbBox)
    })
    return nodebBox
  }
  /////////////////////////////////////////////////////////
  // Returns bounding box for aggregated fragments
  //
  /////////////////////////////////////////////////////////
  async getComponentBoundingBox (model, dbId) {
    const fragIds = await Toolkit.getFragIds(
      model, dbId)
    const fragList = model.getFragmentList()
    return this.getModifiedWorldBoundingBox(
      fragIds, fragList)
  }
  getLeafComponentBoundingBox (model, dbId) {
    const fragIds = Toolkit.getLeafFragIds(
      model, dbId)
    const fragList = model.getFragmentList()
    return this.getModifiedWorldBoundingBox(
      fragIds, fragList)
  }
  /////////////////////////////////////////////////////////
  // Creates Raycaster object from the mouse pointer
  //
  /////////////////////////////////////////////////////////
  pointerToRay (pointer) {
    const camera = this.viewer.navigation.getCamera()
    const pointerVector = new THREE.Vector3()
    const rayCaster = new THREE.Raycaster()
    const pointerDir = new THREE.Vector3()
    const domElement = this.viewer.canvas
    const rect = domElement.getBoundingClientRect()
    const x =  ((pointer.clientX - rect.left) / rect.width) * 2 - 1
    const y = -((pointer.clientY - rect.top) / rect.height) * 2 + 1
    if (camera.isPerspective) {
      pointerVector.set(x, y, 0.5)
      pointerVector.unproject(camera)
      rayCaster.set(camera.position,
        pointerVector.sub(
          camera.position).normalize())
    } else {
      pointerVector.set(x, y, -15)
      pointerVector.unproject(camera)
      pointerDir.set(0, 0, -1)
      rayCaster.set(pointerVector,
        pointerDir.transformDirection(
          camera.matrixWorld))
    }
    return rayCaster.ray
  }
  /////////////////////////////////////////////////////////
  //
  //
  /////////////////////////////////////////////////////////
  containsBox (planes, box) {
    const {min, max} = box
    const vertices = [
      new THREE.Vector3(min.x, min.y, min.z),
      new THREE.Vector3(min.x, min.y, max.z),
      new THREE.Vector3(min.x, max.y, max.z),
      new THREE.Vector3(max.x, max.y, max.z),
      new THREE.Vector3(max.x, max.y, min.z),
      new THREE.Vector3(max.x, min.y, min.z),
      new THREE.Vector3(min.x, max.y, min.z),
      new THREE.Vector3(max.x, min.y, max.z)
    ]
    for (let vertex of vertices) {
      for (let plane of planes) {
        if (plane.distanceToPoint(vertex) < 0) {
          return false
        }
      }
    }
    return true
  }
  /////////////////////////////////////////////////////////
  //
  //
  /////////////////////////////////////////////////////////
  getCameraPlane () {
    const camera = this.viewer.navigation.getCamera()
    const normal = camera.target.clone().sub(
      camera.position).normalize()
    const pos = camera.position
    const dist =
      - normal.x * pos.x
      - normal.y * pos.y
      - normal.z * pos.z
    return new THREE.Plane (normal, dist)
  }
  /////////////////////////////////////////////////////////
  // Runs the main logic of the select set:
  // computes a pyramid shape from the selection window
  // corners and determines enclosed meshes from the model
  //
  /////////////////////////////////////////////////////////
  compute (pointer1, pointer2) {
    // build 4 rays to project the 4 corners
    // of the selection window
    const xMin = Math.min(pointer1.clientX, pointer2.clientX)
    const xMax = Math.max(pointer1.clientX, pointer2.clientX)
    const yMin = Math.min(pointer1.clientY, pointer2.clientY)
    const yMax = Math.max(pointer1.clientY, pointer2.clientY)
    const ray1 = this.pointerToRay({
      clientX: xMin,
      clientY: yMin
    })
    const ray2 = this.pointerToRay({
      clientX: xMax,
      clientY: yMin
    })
    const ray3 = this.pointerToRay({
      clientX: xMax,
      clientY: yMax
    })
    const ray4 = this.pointerToRay({
      clientX: xMin,
      clientY: yMax
    })
    // first we compute the top of the pyramid
    const top = new THREE.Vector3(0,0,0)
    top.add (ray1.origin)
    top.add (ray2.origin)
    top.add (ray3.origin)
    top.add (ray4.origin)
    top.multiplyScalar(0.25)
    // we use the bounding sphere to determine
    // the height of the pyramid
    const {center, radius} = this.boundingSphere
    // compute distance from pyramid top to center
    // of bounding sphere
    const dist = new THREE.Vector3(
      top.x - center.x,
      top.y - center.y,
      top.z - center.z)
    // compute height of the pyramid:
    // to make sure we go far enough,
    // we add the radius of the bounding sphere
    const height = radius + dist.length()
    // compute the length of the side edges
    const angle = ray1.direction.angleTo(
      ray2.direction)
    const length = height / Math.cos(angle * 0.5)
    // compute bottom vertices
    const v1 = new THREE.Vector3(
      ray1.origin.x + ray1.direction.x * length,
      ray1.origin.y + ray1.direction.y * length,
      ray1.origin.z + ray1.direction.z * length)
    const v2 = new THREE.Vector3(
      ray2.origin.x + ray2.direction.x * length,
      ray2.origin.y + ray2.direction.y * length,
      ray2.origin.z + ray2.direction.z * length)
    const v3 = new THREE.Vector3(
      ray3.origin.x + ray3.direction.x * length,
      ray3.origin.y + ray3.direction.y * length,
      ray3.origin.z + ray3.direction.z * length)
    const v4 = new THREE.Vector3(
      ray4.origin.x + ray4.direction.x * length,
      ray4.origin.y + ray4.direction.y * length,
      ray4.origin.z + ray4.direction.z * length)
    // create planes
    const plane1 = new THREE.Plane()
    const plane2 = new THREE.Plane()
    const plane3 = new THREE.Plane()
    const plane4 = new THREE.Plane()
    const plane5 = new THREE.Plane()
    plane1.setFromCoplanarPoints(top, v1, v2)
    plane2.setFromCoplanarPoints(top, v2, v3)
    plane3.setFromCoplanarPoints(top, v3, v4)
    plane4.setFromCoplanarPoints(top, v4, v1)
    plane5.setFromCoplanarPoints( v3, v2, v1)
    const planes = [
      plane1, plane2,
      plane3, plane4,
      plane5, this.getCameraPlane()
    ]
    // filter all bbox which are contained inside
    // the pyramid defined by our planes
    const selectedBBoxInfo =
      this.boundingBoxInfo.filter((bboxInfo) => {
        return this.containsBox(planes, bboxInfo.bbox)
      })
    const dbIds = selectedBBoxInfo.map((bboxInfo) => {
      return bboxInfo.dbId
    })
    return dbIds
  }
}

最新更新