我对python和编程都很陌生-寻找关于如何收紧下面的函数并节省一些时间的建议。一些背景信息:
要求是我收集给定顶级文件夹中每个子文件/文件夹的名称和ID。问题是,我请求数据的服务器将只返回单个文件夹的内容,并且响应将始终指定返回的对象是文件还是文件夹。
(伪代码示例,只是试图快速演示):
Top_level_folderid = 1111
url = "fileserverapi.couldbebetter.com/thismighttakeawhile"
post(url, data=Top_level_folderid)
response({"jim's folder" : id=1234, filetype=folder}, {"weird_video.mp4" : id=4321, filetype=file})
然后我必须遍历每个响应并返回到服务器以获得下一组,在某些情况下,整个顶级文件夹可能包含多达15,000个文件夹和30,000多个随机分布的文件,其中一些文件夹包含1个文件和15个文件夹,其他文件夹包含7个文件和2个子文件夹等。
API本身响应相当快,但是我不知道它可以处理多少并发连接,所以我需要能够调整并找到函数内的最佳点,猜测它将处理10-50的任何地方。我现在的功能:
def drill_folder_loop(folder_list, project_id, directory, jsession_id):
count = 0
temp_folder_list = folder_list #\ A list of dicts [{folder_name1 : folder_id1}, {folder_name2 : folder_id2}]
while count == 0:
temp_folder_list1 = []
for folder in temp_folder_list:
f_name = folder.keys()[0] #// folder_name (not actually used here)
f_id = folder.values()[0] #// folder id
folder_dict = list_folders_files(f_id, jsession_id) #// list_folders_files posts to the api and builds the response back into a list of dicts, same as the original passed to this function.
folder_list = process_folder_files(folder_dict, directory, jsession_id) #// somewhat irrelevant to the question - I have to commit the file data to a DB, I could strip the folder list in this function but since i need it there I just return it instead.
process_recipients = recipient_process(folder_dict, "no", f_id,
directory, project_id)#// more irrelevant but necessary processing.
for i in range(0, len(folder_list)):
append_f = folder_list[i]
temp_folder_list1.append(append_f)#// append new folders to list outside loop
temp_folder_list = [] #// empty temp_folder_list, loop may contain more than a single folder so I have to empty it once I've processed all the folders
for i in range(0, len(temp_folder_list1)):#// Put the new folder list into temp_folder_list so the loop restarts
append_f2 = temp_folder_list1[i]
temp_folder_list.append(append_f2)
if not temp_folder_list: #// end the loop if there are no more sub-folders
count += 1
return log_info("Folder loop complete")
重读这是变量命名的一个很好的教训…不是最简洁的…代码本身工作得很好,但正如你现在可能想象的那样,在数千个文件夹中翻找需要很长时间……关于如何将其变成多线程/处理野兽的任何建议/方向?感谢您花时间阅读这篇文章!
编辑:为了清楚起见,我不想在循环中处理文件夹,而是想在线程中任务它们,以便有多个文件夹,因此同时发生的post请求和响应,以便整个过程花费更少的时间。现在它只是一次循环一个文件夹。希望这能澄清…
编辑:从Noctis Skytower的建议中,我做了一些小的改变来支持python 2.7 (Queue vs Queue和。clock()而不是perf_counter())。太近了!我遇到的问题是,当我将运行线程更改为1时,它完美地完成-当我出于某种原因(随机)将其增加回25时,dfl_worker()中的变量f_id为None。考虑到它可以与1线程一起工作,我猜这不是建议的问题,而是我代码中的其他东西,所以我将其标记为接受。谢谢!
class ThreadPool:
def __init__(self, count, timeout, daemonic):
self.__busy = 0
self.__idle = clock()
self.__jobs = Queue()
self.__lock = Lock()
self.__pool = []
self.__timeout = timeout
for _ in range(count):
thread = Thread(target=self.__worker)
thread.daemon = daemonic
thread.start()
self.__pool.append(thread)
def __worker(self):
while True:
try:
function, args, kwargs = self.__jobs.get(True, 0.1)
except Empty:
with self.__lock:
if self.__busy:
continue
if clock() - self.__idle < self.__timeout:
continue
break
else:
with self.__lock:
self.__busy += 1
try:
function(*args, **kwargs)
except:
pass
with self.__lock:
self.__busy -= 1
self.__idle = clock()
def apply(self, function, *args, **kwargs):
self.__pool = list(filter(Thread.is_alive, self.__pool))
if not self.__pool:
raise RuntimeError('ThreadPool has no running Threads')
self.__jobs.put((function, args, kwargs))
def join(self):
for thread in self.__pool:
thread.join()
def drill_folder_loop(folder_list, project_id, directory, jsession_id):
tp = ThreadPool(25, 1, False)
tp.apply(dfl_worker, tp, folder_list, project_id, directory, jsession_id)
tp.join()
def dfl_worker(tp, folder_list, project_id, directory, jsession_id):
for folder in folder_list:
f_name = folder.keys()[0]
f_id = folder.values()[0]
f_dict = list_folders_files(f_id, jsession_id)
f_list = process_folder_files(f_dict, directory, jsession_id)
tp.apply(dfl_worker, tp, f_list, project_id, directory, jsession_id)
recipient_process(f_dict, 'no', f_id, directory, project_id)
log_info('One folder processed')
我可以推荐以下产品吗?
from queue import Empty, Queue
from threading import Lock, Thread
from time import perf_counter
def drill_folder_loop(folder_list, project_id, directory, jsession_id):
while True:
next_folder_list = []
for folder in folder_list:
f_name, f_id = folder.popitem()
f_dict = list_folders_files(f_id, jsession_id)
f_list = process_folder_files(f_dict, directory, jsession_id)
recipient_process(f_dict, 'no', f_id, directory, project_id)
next_folder_list.extend(f_list)
if not next_folder_list:
break
folder_list = next_folder_list
return log_info('Folder loop complete')
###############################################################################
class ThreadPool:
def __init__(self, count, timeout, daemonic):
self.__busy = 0
self.__idle = perf_counter()
self.__jobs = Queue()
self.__lock = Lock()
self.__pool = []
self.__timeout = timeout
for _ in range(count):
thread = Thread(target=self.__worker)
thread.daemon = daemonic
thread.start()
self.__pool.append(thread)
def __worker(self):
while True:
try:
function, args, kwargs = self.__jobs.get(True, 0.1)
except Empty:
with self.__lock:
if self.__busy:
continue
if perf_counter() - self.__idle < self.__timeout:
continue
break
else:
with self.__lock:
self.__busy += 1
try:
function(*args, **kwargs)
except:
pass
with self.__lock:
self.__busy -= 1
self.__idle = perf_counter()
def apply(self, function, *args, **kwargs):
self.__pool = list(filter(Thread.is_alive, self.__pool))
if not self.__pool:
raise RuntimeError('ThreadPool has no running Threads')
self.__jobs.put((function, args, kwargs))
def join(self):
for thread in self.__pool:
thread.join()
def drill_folder_loop(folder_list, project_id, directory, jsession_id):
tp = ThreadPool(25, 1, False)
tp.apply(dfl_worker, tp, folder_list, project_id, directory, jsession_id)
tp.join()
def dfl_worker(tp, folder_list, project_id, directory, jsession_id):
for folder in folder_list:
f_name, f_id = folder.popitem()
f_dict = list_folders_files(f_id, jsession_id)
f_list = process_folder_files(f_dict, directory, jsession_id)
tp.apply(dfl_worker, tp, f_list, project_id, directory, jsession_id)
recipient_process(f_dict, 'no', f_id, directory, project_id)
log_info('One folder processed')
第一个drill_folder_loop
是你的函数的重写,应该做同样的事情,但第二个版本应该利用ThreadPool
类,这样你的文件夹列表可以由多达25个线程并发处理。请注意,线程版本不会返回任何有意义的内容,如果在末尾删除tp.join()
,则执行后几乎立即返回。
要理解你想用这段代码做什么有点棘手。
据我所知,你想让这个代码多线程;要做到这一点,你需要找到一个可以相互独立执行的routine/taskset
,然后你可以把它从循环中取出来,并创建一个独立的函数。
def task(someparams):
#mytasks using the required someparams
现在您可以创建一组工作线程,并为它们分配工作以运行task
例程并完成您的工作。
task
例程的多线程方法:
import thread
WORKER_THREAD = 10
c = 0
while c < WORKER_THREAD:
thread.start_new_thread( task, (someparams, ) )
while 1:
pass
线程。Start_new_thread (task, (someparams,))