Apache Flink "Could not materialize checkpoint"



我正在尝试为我的用例启用 RocksDB 检查点,但不断收到以下错误。

AsynchronousException{java.lang.Exception: Could not materialize checkpoint 1 for operator Map -> Sink: Unnamed (1/1).}
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointExceptionHandler.tryHandleCheckpointException(StreamTask.java:1153)
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.handleExecutionException(StreamTask.java:947)
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:884)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: Could not materialize checkpoint 1 for operator Map -> Sink: Unnamed (1/1).
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.handleExecutionException(StreamTask.java:942)
    ... 6 more
Caused by: java.util.concurrent.ExecutionException: java.lang.AbstractMethodError
    at java.util.concurrent.FutureTask.report(FutureTask.java:122)
    at java.util.concurrent.FutureTask.get(FutureTask.java:192)
    at org.apache.flink.runtime.concurrent.FutureUtils.runIfNotDoneAndGet(FutureUtils.java:394)
    at org.apache.flink.streaming.api.operators.OperatorSnapshotFinalizer.<init>(OperatorSnapshotFinalizer.java:53)
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:853)
    ... 5 more
Caused by: java.lang.AbstractMethodError
    at org.apache.flink.api.common.typeutils.TypeSerializerUtils.snapshotBackwardsCompatible(TypeSerializerUtils.java:49)
    at java.util.stream.ReferencePipeline$3$1.accept(ReferencePipeline.java:193)
    at java.util.Spliterators$ArraySpliterator.forEachRemaining(Spliterators.java:948)
    at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:482)
    at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:472)
    at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:546)
    at java.util.stream.AbstractPipeline.evaluateToArrayNode(AbstractPipeline.java:260)
    at java.util.stream.ReferencePipeline.toArray(ReferencePipeline.java:438)
    at org.apache.flink.api.common.typeutils.TypeSerializerUtils.snapshotBackwardsCompatible(TypeSerializerUtils.java:39)
    at org.apache.flink.api.common.typeutils.NestedSerializersSnapshotDelegate.<init>(NestedSerializersSnapshotDelegate.java:63)
    at org.apache.flink.api.common.typeutils.CompositeTypeSerializerSnapshot.<init>(CompositeTypeSerializerSnapshot.java:127)
    at org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction$StateSerializerSnapshot.<init>(TwoPhaseCommitSinkFunction.java:851)
    at org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction$StateSerializer.snapshotConfiguration(TwoPhaseCommitSinkFunction.java:785)
    at org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction$StateSerializer.snapshotConfiguration(TwoPhaseCommitSinkFunction.java:613)
    at org.apache.flink.runtime.state.RegisteredOperatorStateBackendMetaInfo.computeSnapshot(RegisteredOperatorStateBackendMetaInfo.java:170)
    at org.apache.flink.runtime.state.RegisteredOperatorStateBackendMetaInfo.snapshot(RegisteredOperatorStateBackendMetaInfo.java:103)
    at org.apache.flink.runtime.state.DefaultOperatorStateBackendSnapshotStrategy$1.callInternal(DefaultOperatorStateBackendSnapshotStrategy.java:123)
    at org.apache.flink.runtime.state.DefaultOperatorStateBackendSnapshotStrategy$1.callInternal(DefaultOperatorStateBackendSnapshotStrategy.java:108)
    at org.apache.flink.runtime.state.AsyncSnapshotCallable.call(AsyncSnapshotCallable.java:75)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at org.apache.flink.runtime.concurrent.FutureUtils.runIfNotDoneAndGet(FutureUtils.java:391)
    ... 7 more

flink-config.yaml 是

################################################################################
    #  Licensed to the Apache Software Foundation (ASF) under one
    #  or more contributor license agreements.  See the NOTICE file
    #  distributed with this work for additional information
    #  regarding copyright ownership.  The ASF licenses this file
    #  to you under the Apache License, Version 2.0 (the
    #  "License"); you may not use this file except in compliance
    #  with the License.  You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing, software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    # limitations under the License.
    ################################################################################

    #==============================================================================
    # Common
    #==============================================================================
    # The external address of the host on which the JobManager runs and can be
    # reached by the TaskManagers and any clients which want to connect. This setting
    # is only used in Standalone mode and may be overwritten on the JobManager side
    # by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
    # In high availability mode, if you use the bin/start-cluster.sh script and setup
    # the conf/masters file, this will be taken care of automatically. Yarn/Mesos
    # automatically configure the host name based on the hostname of the node where the
    # JobManager runs.
    jobmanager.rpc.address: fl-service
    # The RPC port where the JobManager is reachable.
    jobmanager.rpc.port: 6123

    # The heap size for the JobManager JVM
    jobmanager.heap.size: 1024m

    # The heap size for the TaskManager JVM
    taskmanager.heap.size: 1024m

    # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
    taskmanager.numberOfTaskSlots: 1
    # The parallelism used for programs that did not specify and other parallelism.
    parallelism.default: 1
    # The default file system scheme and authority.
    #
    # By default file paths without scheme are interpreted relative to the local
    # root file system 'file:///'. Use this to override the default and interpret
    # relative paths relative to a different file system,
    # for example 'hdfs://mynamenode:12345'
    #
    # fs.default-scheme
    #==============================================================================
    # High Availability
    #==============================================================================
    # The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
    #
    high-availability: zookeeper
    # The path where metadata for master recovery is persisted. While ZooKeeper stores
    # the small ground truth for checkpoint and leader election, this location stores
    # the larger objects, like persisted dataflow graphs.
    #
    # Must be a durable file system that is accessible from all nodes
    # (like HDFS, S3, Ceph, nfs, ...)
    #
    high-availability.storageDir: file:///opt/flink/ha-storage
    # The list of ZooKeeper quorum peers that coordinate the high-availability
    # setup. This must be a list of the form:
    # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
    #
    # Since K8s automatically load balances to an active node, using the service works fine
    high-availability.zookeeper.quorum: zk-service:2181

    # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
    # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
    # The default value is "open" and it can be changed to "creator" if ZK security is enabled
    #
    # high-availability.zookeeper.client.acl: open
    # Other options recomended by https://ci.apache.org/projects/flink/flink-docs-release-1.7/ops/jobmanager_high_availability.html#config-file-flink-confyaml
    high-availability.zookeeper.path.root: /flink
    high-availability.cluster-id: /cluster_one
    high-availability.jobmanager.port: 50010
    #==============================================================================
    # Fault tolerance and checkpointing
    #==============================================================================
    # The backend that will be used to store operator state checkpoints if
    # checkpointing is enabled.
    #
    # Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
    # <class-name-of-factory>.
    #
    state.backend: rocksdb
    # Directory for checkpoints filesystem, when using any of the default bundled
    # state backends.
    #
    state.checkpoints.dir: file:///opt/flink/checkpoints
    # Default target directory for savepoints, optional.
    #
    state.savepoints.dir: file:///opt/flink/savepoints
    # Flag to enable/disable incremental checkpoints for backends that
    # support incremental checkpoints (like the RocksDB state backend).
    #
    state.backend.incremental: true
    state.checkpoints.num-retained: 2
    #==============================================================================
    # Web Frontend
    #==============================================================================
    # The address under which the web-based runtime monitor listens.
    #
    #web.address: 0.0.0.0
    # The port under which the web-based runtime monitor listens.
    # A value of -1 deactivates the web server.
    rest.port: 8081
    # Flag to specify whether job submission is enabled from the web-based
    # runtime monitor. Uncomment to disable.
    #web.submit.enable: false
    web.upload.dir: /opt/flink/web-uploads
    #==============================================================================
    # Advanced
    #==============================================================================
    # Override the directories for temporary files. If not specified, the
    # system-specific Java temporary directory (java.io.tmpdir property) is taken.
    #
    # For framework setups on Yarn or Mesos, Flink will automatically pick up the
    # containers' temp directories without any need for configuration.
    #
    # Add a delimited list for multiple directories, using the system directory
    # delimiter (colon ':' on unix) or a comma, e.g.:
    #     /data1/tmp:/data2/tmp:/data3/tmp
    #
    # Note: Each directory entry is read from and written to by a different I/O
    # thread. You can include the same directory multiple times in order to create
    # multiple I/O threads against that directory. This is for example relevant for
    # high-throughput RAIDs.
    #
    # io.tmp.dirs: /tmp
    # Specify whether TaskManager's managed memory should be allocated when starting
    # up (true) or when memory is requested.
    #
    # We recommend to set this value to 'true' only in setups for pure batch
    # processing (DataSet API). Streaming setups currently do not use the TaskManager's
    # managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
    # while the 'memory' and 'filesystem' backends explicitly keep data as objects
    # to save on serialization cost.
    #
    # taskmanager.memory.preallocate: false
    # The classloading resolve order. Possible values are 'child-first' (Flink's default)
    # and 'parent-first' (Java's default).
    #
    # Child first classloading allows users to use different dependency/library
    # versions in their application than those in the classpath. Switching back
    # to 'parent-first' may help with debugging dependency issues.
    #
    # classloader.resolve-order: child-first
    # The amount of memory going to the network stack. These numbers usually need
    # no tuning. Adjusting them may be necessary in case of an "Insufficient number
    # of network buffers" error. The default min is 64MB, teh default max is 1GB.
    #
    # taskmanager.network.memory.fraction: 0.1
    # taskmanager.network.memory.min: 64mb
    # taskmanager.network.memory.max: 1gb
    #==============================================================================
    # Flink Cluster Security Configuration
    #==============================================================================
    # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
    # may be enabled in four steps:
    # 1. configure the local krb5.conf file
    # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
    # 3. make the credentials available to various JAAS login contexts
    # 4. configure the connector to use JAAS/SASL
    # The below configure how Kerberos credentials are provided. A keytab will be used instead of
    # a ticket cache if the keytab path and principal are set.
    # security.kerberos.login.use-ticket-cache: true
    # security.kerberos.login.keytab: /path/to/kerberos/keytab
    # security.kerberos.login.principal: flink-user
    # The configuration below defines which JAAS login contexts
    # security.kerberos.login.contexts: Client,KafkaClient
    #==============================================================================
    # ZK Security Configuration
    #==============================================================================
    # Below configurations are applicable if ZK ensemble is configured for security
    # Override below configuration to provide custom ZK service name if configured
    # zookeeper.sasl.service-name: zookeeper
    # The configuration below must match one of the values set in "security.kerberos.login.contexts"
    # zookeeper.sasl.login-context-name: Client
    #==============================================================================
    # HistoryServer
    #==============================================================================
    # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
    # Directory to upload completed jobs to. Add this directory to the list of
    # monitored directories of the HistoryServer as well (see below).
    #jobmanager.archive.fs.dir: hdfs:///completed-jobs/
    # The address under which the web-based HistoryServer listens.
    #historyserver.web.address: 0.0.0.0
    # The port under which the web-based HistoryServer listens.
    #historyserver.web.port: 8082
    # Comma separated list of directories to monitor for completed jobs.
    #historyserver.archive.fs.dir: hdfs:///completed-jobs/
    # Interval in milliseconds for refreshing the monitored directories.
    #historyserver.archive.fs.refresh-interval: 10000

    # Additional Settings
    metrics.internal.query-service.port: 50011
    # Other things that would be added by docker-entrypoint.sh
    # if I wasn't overwriting the file.
    blob.server.port: 6124
    query.server.port: 6125

代码可以在 https://github.com/varnost/Corengine 时生成。如果行 #30 在 Corengine/src/main/java/io/varnost/base/LogStream.java 中,则使其工作/崩溃的唯一更改。如果我评论它工作正常,有了它,它就会崩溃。

我做错了什么才能让 RocksDB 成功进入检查点?

谢谢!

我不确定导致问题的确切原因。但是我正在为 v1.7.2 编译并在 1.8.0 上运行。当我更新我的pom.xml为flink v1.8.0构建时(因此版本匹配(,错误消失了,检查点成功完成。

相关内容

  • 没有找到相关文章

最新更新