R将数组整形为包含矩阵列表中的数据两次,作为keras的准备



我正在尝试创建一个3D数组,该数组复制元素(数据的副本(,并且两个元素的行保持不变。这最终是一个时间序列的keras/tensorflow lstm输入数组(样本、时间步、特征(,由于不同的原因,我已经确定我的时间步也是我的特征,我的样本是固定的(行(。

一些数据:

perhaps <- matrix(sample(c(0:1), 20, replace = TRUE), nrow = 4, 
ncol = 5)
print(perhaps)
perhaps
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    1    0    1
[2,]    0    0    0    0    1
[3,]    0    1    1    0    1
[4,]    1    0    0    1    1
perhaps_2_lst <- list(perhaps, perhaps)
all.equal(perhaps_2_lst[[1]], perhaps_2_lst[[2]])
[1] TRUE
#construct array from SOF inquestion:15213463
perhaps_arr <- array(
data = do.call(rbind, lapply(perhaps_2_lst, as.vector)),
dim = c(dim = c(dim(perhaps_2_lst[[1]])[1], 
dim(perhaps_2_lst[[1]])[2], dim(perhaps_2_lst[[1]])[2]))
dim(perhaps_arr)
[1] 4 5 5

令人鼓舞。

print(perhaps_arr)
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    0    1    1
[2,]    0    0    0    1    1
[3,]    0    1    0    0    0
[4,]    0    1    0    0    0
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,]    1    0    0    1    1
[2,]    1    0    0    1    1
[3,]    0    0    1    1    1
[4,]    0    0    1    1    1
, , 3
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    0    1    1
[2,]    0    0    0    1    1
[3,]    0    1    0    0    0
[4,]    0    1    0    0    0
, , 4
[,1] [,2] [,3] [,4] [,5]
[1,]    1    0    0    1    1
[2,]    1    0    0    1    1
[3,]    0    0    1    1    1
[4,]    0    0    1    1    1
, , 5
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    0    1    1
[2,]    0    0    0    1    1
[3,]    0    1    0    0    0
[4,]    0    1    0    0    0

Opps。我想对数组不是很熟悉。我期待着这样的东西:

, , 1
#perhaps
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    1    0    1
[2,]    0    0    0    0    1
[3,]    0    1    1    0    1
[4,]    1    0    0    1    1
, , 2
#perhaps
[,1] [,2] [,3] [,4] [,5]
[1,]    0    0    1    0    1
[2,]    0    0    0    0    1
[3,]    0    1    1    0    1
[4,]    1    0    0    1    1

即。重复相同的数据。现在被难住了。非常感谢为理解这里发生的事情而提出的建议和澄清。

我们可以使用replicate

n <- 2
replicate(n, perhaps)
#, , 1
#     [,1] [,2] [,3] [,4] [,5]
#[1,]    0    0    1    0    1
#[2,]    0    0    0    0    1
#[3,]    0    1    1    0    1
#[4,]    1    0    0    1    1
#, , 2
#     [,1] [,2] [,3] [,4] [,5]
#[1,]    0    0    1    0    1
#[2,]    0    0    0    0    1
#[3,]    0    1    1    0    1
#[4,]    1    0    0    1    1

相关内容

  • 没有找到相关文章

最新更新