add_callback线程池,但异常关于"Cannot write() after finish()."



我正在使用线程池,同时使用Tornado来做一些工作。这是代码:

common/thread_pool.py

import tornado.ioloop
class Worker(threading.Thread):
    def __init__(self, queue):
        threading.Thread.__init__(self)
        self._queue = queue
    def run(self):
        logging.info('Worker start')
        while True:
            content = self._queue.get()
            if isinstance(content, str) and content == 'quit':
                break
            #content: (func, args, on_complete)
            func = content[0]
            args = content[1]
            on_complete = content[2]
            resp = func(args)
            tornado.ioloop.IOLoop.instance().add_callback(lambda: on_complete(resp))
            #i dont know is correct to call this
            #self._queue.task_done()
        logging.info('Worker stop')
class WorkerPool(object):
    _workers = []
    def __init__(self, num):
        self._queue = Queue.Queue()
        self._size = num
    def start(self):
        logging.info('WorkerPool start %d' % self._size)
        for _ in range(self._size):
            worker = Worker(self._queue)
            worker.start()
            self._workers.append(worker)
    def stop(self):
        for worker in self._workers:
            self._queue.put('quit') 
        for worker in self._workers:
            worker.join()
        logging.info('WorkerPool stopd')
    def append(self, content):
        self._queue.put(content)

网关.py

import tornado.ioloop
import tornado.web
from common import thread_pool
workers = None
class MainServerHandler(tornado.web.RequestHandler):
    @tornado.web.asynchronous
    def get(self):
        start_time = time.time()
        method = 'get'
        content = (self.handle, (method, self.request, start_time), self.on_complete)
        workers.append(content)
    @tornado.web.asynchronous
    def post(self):
        start_time = time.time()
        method = 'post'
        content = (self.handle, (method, self.request, start_time), self.on_complete)
        workers.append(content)
    def handle(self, args):
        method, request, start_time = args
        #for test, just return
        return 'test test'
    def on_complete(self, res):
        logging.debug('on_complete')
        self.write(res)
        self.finish()
        return        
def main(argv):  
    global workers
    workers = thread_pool.WorkerPool(conf_mgr.thread_num)
    workers.start()
    application = tornado.web.Application([(r"/", MainServerHandler)])
    application.listen(8888)
    tornado.ioloop.IOLoop.instance().start()
if __name__ == "__main__":
    main(sys.argv[1:])

当我发出许多并发请求时,我会得到以下错误:

ERROR: 2014-09-15 18:04:03: ioloop.py:435 * 140500107065056 Exception in callback <tornado.stack_context._StackContextWrapper object at 0x7fc8b4d6b9f0>
  Traceback (most recent call last):
     File "/home/work/nlp_arch/project/ps/se/nlp-arch/gateway/gateway/../third-party/tornado-2.4.1/tornado/ioloop.py", line 421, in _run_callback
       callback()
     File "/home/work/nlp_arch/project/ps/se/nlp-arch/gateway/gateway/../common/thread_pool.py", line 39, in <lambda>
       tornado.ioloop.IOLoop.instance().add_callback(lambda: on_complete(resp))
     File "/home/work/nlp_arch/project/ps/se/nlp-arch/gateway/gateway/gateway.py", line 92, in on_complete
       self.write(res)
     File "/home/work/nlp_arch/project/ps/se/nlp-arch/gateway/gateway/../third-party/tornado-2.4.1/tornado/web.py", line 489, in write
      raise RuntimeError("Cannot write() after finish().  May be caused "
  RuntimeError: Cannot write() after finish().  May be caused by using async operations without the @asynchronous decorator.

但是在finish之后我没有呼叫write。我还使用了@asynchronous装饰器。同时,在日志中,我看到write/finish是由同一个线程调用的。

问题在于将回调添加到I/O循环的方式。这样添加:

tornado.ioloop.IOLoop.instance().add_callback(on_complete, resp)

错误就会消失。

您看到这种奇怪的行为是因为当您使用lambda函数时,您在函数的本地范围内创建了一个闭包,而该闭包中使用的变量在执行lambda时被绑定,而不是在创建它时。考虑这个例子:

funcs = []
def func(a):
    print a
for i in range(5):
   funcs.append(lambda: func(i))
for f in funcs:
    f()

输出:

4
4
4
4
4

因为您的worker方法在while循环中运行,on_complete最终被重新定义了几次,更改了lambda中on_complete的值。这意味着,如果一个工作线程为处理程序a设置了on_complete,但随后获得了另一个任务,并在为处理程序B运行回调集之前为处理程序设置了on_complete,那么两个回调最终都会运行处理程序B的on_complete

如果您真的想使用lambda,也可以通过在lambda:的本地范围中绑定on_complete来避免这种情况

tornado.ioloop.IOLoop.instance().add_callback(lambda on_complete=on_complete: on_complete(resp))

但是直接添加函数及其参数要好得多。

相关内容

  • 没有找到相关文章

最新更新