我正在尝试使用apache flink构建一个示例应用程序:
- 从kafka队列中读取一系列库存符号(例如'csco','fb')。
- 对于每个符号,可以实时查找当前价格并流式传输下游处理的值。
*更新到原始帖子 *
我将映射函数移至一个单独的类中,并且没有收到运行时错误消息" MAPFUNCTICT的实现不再可序列化。该对象可能包含或参考不可序列化的字段"。
我现在面临的问题是,我试图写价的Kafka主题" Stockprices"没有收到它们。我正在尝试进行麻烦,并将发布任何更新。
public class RetrieveStockPrices {
@SuppressWarnings("serial")
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment streamExecEnv = StreamExecutionEnvironment.getExecutionEnvironment();
streamExecEnv.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "stocks");
DataStream<String> streamOfStockSymbols = streamExecEnv.addSource(new FlinkKafkaConsumer08<String>("stocksymbol", new SimpleStringSchema(), properties));
DataStream<String> stockPrice =
streamOfStockSymbols
//get unique keys
.keyBy(new KeySelector<String, String>() {
@Override
public String getKey(String trend) throws Exception {
return trend;
}
})
//collect events over a window
.window(TumblingEventTimeWindows.of(Time.seconds(60)))
//return the last event from the window...all elements are the same "Symbol"
.apply(new WindowFunction<String, String, String, TimeWindow>() {
@Override
public void apply(String key, TimeWindow window, Iterable<String> input, Collector<String> out) throws Exception {
out.collect(input.iterator().next().toString());
}
})
.map(new StockSymbolToPriceMapFunction());
streamExecEnv.execute("Retrieve Stock Prices");
}
}
public class StockSymbolToPriceMapFunction extends RichMapFunction<String, String> {
@Override
public String map(String stockSymbol) throws Exception {
final StreamExecutionEnvironment streamExecEnv = StreamExecutionEnvironment.getExecutionEnvironment();
streamExecEnv.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
System.out.println("StockSymbolToPriceMapFunction: stockSymbol: " + stockSymbol);
DataStream<String> stockPrices = streamExecEnv.addSource(new LookupStockPrice(stockSymbol));
stockPrices.keyBy(new CustomKeySelector()).addSink(new FlinkKafkaProducer08<String>("localhost:9092", "stockprices", new SimpleStringSchema()));
return "100000";
}
private static class CustomKeySelector implements KeySelector<String, String> {
@Override
public String getKey(String arg0) throws Exception {
return arg0.trim();
}
}
}
public class LookupStockPrice extends RichSourceFunction<String> {
public String stockSymbol = null;
public boolean isRunning = true;
public LookupStockPrice(String inSymbol) {
stockSymbol = inSymbol;
}
@Override
public void open(Configuration parameters) throws Exception {
isRunning = true;
}
@Override
public void cancel() {
isRunning = false;
}
@Override
public void run(SourceFunction.SourceContext<String> ctx)
throws Exception {
String stockPrice = "0";
while (isRunning) {
//TODO: query Google Finance API
stockPrice = Integer.toString((new Random()).nextInt(100)+1);
ctx.collect(stockPrice);
Thread.sleep(10000);
}
}
}
StreamExecutionEnvironment
没有缩进用于在流媒体应用程序的操作员内部使用。并非有意义的是,这没有受到测试和鼓励。它可能起作用并做点事
您程序中的StockSymbolToPriceMapFunction
为每个传入记录指定一个全新独立的新流媒体应用程序。但是,由于您不调用streamExecEnv.execute()
,因此没有启动程序,并且map
方法无需做任何事情即可返回。
如果您会调用streamExecEnv.execute()
,则该功能将在工人JVM中启动新的本地弗林克集群,并在此本地flink群集上启动应用程序。本地的Flink实例将占用很多堆空间,并且在启动了几个集群之后,由于OutOfMemoryError
,该工人可能会死亡,这不是您想发生的事情。