我必须根据值列表向 PySpark 数据帧添加列。
a= spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
我有一个叫做评级的列表,它是每只宠物的评级。
rating = [5,4,1]
我需要在数据帧后附加一个名为 Rating 的列,以便
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+
我已经完成了以下操作,但是它只返回评级列列表中的第一个值
def add_labels():
return rating.pop(0)
labels_udf = udf(add_labels, IntegerType())
new_df = a.withColumn('Rating', labels_udf()).cache()
外:
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 5|
| Mouse| Cat| 5|
+------+-----+------+
from pyspark.sql.functions import monotonically_increasing_id, row_number
from pyspark.sql import Window
#sample data
a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
["Animal", "Enemy"])
a.show()
#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])
#add 'sequential' index and join both dataframe to get the final result
a = a.withColumn("row_idx", row_number().over(Window.orderBy(monotonically_increasing_id())))
b = b.withColumn("row_idx", row_number().over(Window.orderBy(monotonically_increasing_id())))
final_df = a.join(b, a.row_idx == b.row_idx).
drop("row_idx")
final_df.show()
输入:
+------+-----+
|Animal|Enemy|
+------+-----+
| Dog| Cat|
| Cat| Dog|
| Mouse| Cat|
+------+-----+
输出为:
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Cat| Dog| 4|
| Dog| Cat| 5|
| Mouse| Cat| 1|
+------+-----+------+
正如@Tw UxTLi51Nus所提到的,如果你可以按动物排序数据帧,而不改变你的结果,你可以执行以下操作:
def add_labels(indx):
return rating[indx-1] # since row num begins from 1
labels_udf = udf(add_labels, IntegerType())
a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
a.createOrReplaceTempView('a')
a = spark.sql('select row_number() over (order by "Animal") as num, * from a')
a.show()
+---+------+-----+
|num|Animal|Enemy|
+---+------+-----+
| 1| Dog| Cat|
| 2| Cat| Dog|
| 3| Mouse| Cat|
+---+------+-----+
new_df = a.withColumn('Rating', labels_udf('num'))
new_df.show()
+---+------+-----+------+
|num|Animal|Enemy|Rating|
+---+------+-----+------+
| 1| Dog| Cat| 5|
| 2| Cat| Dog| 4|
| 3| Mouse| Cat| 1|
+---+------+-----+------+
然后删除num
列:
new_df.drop('num').show()
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+
编辑:
另一种 - 但可能丑陋且效率低下 - 如果您无法按列排序,方法是返回rdd并执行以下操作:
a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
# or create the rdd from the start:
# a = spark.sparkContext.parallelize([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")])
a = a.rdd.zipWithIndex()
a = a.toDF()
a.show()
+-----------+---+
| _1| _2|
+-----------+---+
| [Dog,Cat]| 0|
| [Cat,Dog]| 1|
|[Mouse,Cat]| 2|
+-----------+---+
a = a.select(bb._1.getItem('Animal').alias('Animal'), bb._1.getItem('Enemy').alias('Enemy'), bb._2.alias('num'))
def add_labels(indx):
return rating[indx] # indx here will start from zero
labels_udf = udf(add_labels, IntegerType())
new_df = a.withColumn('Rating', labels_udf('num'))
new_df.show()
+---------+--------+---+------+
|Animal | Enemy|num|Rating|
+---------+--------+---+------+
| Dog| Cat| 0| 5|
| Cat| Dog| 1| 4|
| Mouse| Cat| 2| 1|
+---------+--------+---+------+
(如果你有很多数据,我不建议这样做(
希望这有帮助,祝你好运!
我可能是错的,但我相信接受的答案是行不通的。 monotonically_increasing_id
只保证 ID 是唯一且不断增加的,而不是连续的。因此,在两个不同的数据帧上使用它可能会创建两个非常不同的列,并且联接大多返回空。
从这个答案 https://stackoverflow.com/a/48211877/7225303 类似问题中汲取灵感,我们可以将错误答案更改为:
from pyspark.sql.window import Window as W
from pyspark.sql import functions as F
a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
["Animal", "Enemy"])
a.show()
+------+-----+
|Animal|Enemy|
+------+-----+
| Dog| Cat|
| Cat| Dog|
| Mouse| Cat|
+------+-----+
#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])
b.show()
+------+
|Rating|
+------+
| 5|
| 4|
| 1|
+------+
a = a.withColumn("idx", F.monotonically_increasing_id())
b = b.withColumn("idx", F.monotonically_increasing_id())
windowSpec = W.orderBy("idx")
a = a.withColumn("idx", F.row_number().over(windowSpec))
b = b.withColumn("idx", F.row_number().over(windowSpec))
a.show()
+------+-----+---+
|Animal|Enemy|idx|
+------+-----+---+
| Dog| Cat| 1|
| Cat| Dog| 2|
| Mouse| Cat| 3|
+------+-----+---+
b.show()
+------+---+
|Rating|idx|
+------+---+
| 5| 1|
| 4| 2|
| 1| 3|
+------+---+
final_df = a.join(b, a.idx == b.idx).drop("idx")
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+
评分转换为rdd
rating = [5,4,1]
ratingrdd = sc.parallelize(rating)
然后将您的dataframe
转换为rdd
,使用zip
将ratingrdd
的每个值附加到rdd数据帧,并将压缩的rdd再次转换为dataframe
sqlContext.createDataFrame(a.rdd.zip(ratingrdd).map(lambda x: (x[0][0], x[0][1], x[1])), ["Animal", "Enemy", "Rating"]).show()
它应该给你
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+
尝试执行的操作不起作用,因为rating
列表位于驱动程序的内存中,而a
数据帧位于执行程序的内存中(udf 也适用于执行程序(。
您需要做的是将键添加到ratings
列表中,如下所示:
ratings = [('Dog', 5), ('Cat', 4), ('Mouse', 1)]
然后,从列表中创建一个ratings
数据帧,并联接两者以添加新的列:
ratings_df = spark.createDataFrame(ratings, ['Animal', 'Rating'])
new_df = a.join(ratings_df, 'Animal')
我们可以在 Pandas 数据框中添加新列,PySpark 提供了将 Spark 数据框转换为 Pandas 数据框的功能。
test_spark_df = spark.createDataFrame([(1,'A'), (2, 'B'), (3, 'C')], schema=['id', 'name'])
test_spark_df.show()
+---+----+
| id|name|
+---+----+
| 1| A|
| 2| B|
| 3| C|
+---+----+
将此火花 - df 转换为熊猫 df。
new_pandas_df = test_spark_df.toPandas()
new_pandas_df['gender'] = ['M', 'F', 'M']
new_pandas_df
id name gender
0 1 A M
1 2 B F
2 3 C M
将此熊猫 df 转换为火花 df。
converted_spark_df = spark.createDataFrame(new_pandas_df)
converted_spark_df.show()
+---+----+------+
| id|name|gender|
+---+----+------+
| 1| A| M|
| 2| B| F|
| 3| C| M|
+---+----+------+
按照使用 udf 的最初想法,您可以执行以下操作:
import pyspark.sql.functions as F
def add_labels(idx):
lista = [5,4,1]
return lista[idx]
a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
a = a.withColumn("idx", F.monotonically_increasing_id())
a.show()
+------+-----+---+
|Animal|Enemy|idx|
+------+-----+---+
| Dog| Cat| 0|
| Cat| Dog| 1|
| Mouse| Cat| 2|
+------+-----+---+
labels_udf = F.udf(add_labels, IntegerType())
new_df = a.withColumn('Rating', labels_udf(F.col('idx'))).drop('idx')
new_df.show()
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+