>假设我巨大的字典,例如huge_dict={'Key1': 'ABC' , 'Key 2' : 'DEF' ,'KEY 4' :'GHI', 'KEY5': 'IJK' ... , 'KEY N': 'XYZ'}
在
huge_dict中搜索值需要花费大量时间 我正在尝试多处理技术,因为它使用不同的内核 我正在尝试做以下步骤 步骤:1:在 m 中拆分huge_dict 小字典
2:在 python 中创建 m 进程并将 seraching 值传递给它
3:
如果任何进程获得该值,则终止所有进程。
在此之前,我加载深度学习/机器学习模型。 当尝试使用多处理时,它会在我的 prrocess 生成时加载 mnay 时间 其输出为 huge_dict
huge_dict = {'Key1': 'ABC' , 'Key 2' : 'DEF' ,'KEY 4' :'GHI', 'KEY5': 'IJK'}
d1 = dict(huge_dict.items()[len(huge_dict)/2:])
d2 = dict(huge_dict.items()[:len(huge_dict)/2])
# Is this an efficient way to do it ? what if I split in n dict
def worker(dict , searck_value, num):
"""thread worker function"""
print('Worker:', num)
print(mp.cpu_count())
return dict
#is is correct way to use multiprocessing
#current using time consuming logic:
def search(d, word)
d = {'key1': "ASD", 'key2': "asd", 'key3':"fds", 'key4':"gfd", 'key5': "hjk"}
for key in d:
if(d[key] in "search sentence or grp of words")#doing fuzzy search here
return d[key]
数据格式如下:
huge_dict={"10001": ["sentence1", "sentence2","sentence3","sentence4"],
"4001": ["sentence1", "sentence2"],
"35432": ["sentence1", "sentence2","sentence3","sentence4", ... "sentence N"],
.....
"N":["N no of sentences"] }
我假设您想检查给定字符串中是否有任何huge_dict
值作为子字符串(不仅是单词)存在。
尝试给定字符串的huge_dict.values()
和所有子字符串的set.intersection
是否更快:
def sub(s):
""" Return all substrings of a given string """
return [s[i:j+1] for i in range(len(s)) for j in range(i,len(s))]
huge_dict = {'Key1': 'ABC' , 'Key 2' : 'DEF' ,'KEY 4' :'GHI', 'KEY5': 'IJK'}
s = "A REKDEFY, CI"
huge_values = set(huge_dict.values())
>>> print(huge_values.intersection(sub(s))
{'DEF'}