我有两个数据框架在spark scala注册为表。从这两个表
表1: +-----+--------+
|id |values |
+-----+----- +
| 0 | v1 |
| 0 | v2 |
| 1 | v3 |
| 1 | v1 |
+-----+----- +
表2: +-----+----+--- +----+
|id |v1 |v2 | v3
+-----+-------- +----+
| 0 | a1| b1| - |
| 1 | a2| - | c2 |
+-----+---------+----+
我想用上面的两个表生成一个新表。
表3: +-----+--------+--------+
|id |values | field |
+-----+--------+--------+
| 0 | v1 | a1 |
| 0 | v2 | b1 |
| 1 | v3 | c2 |
| 1 | v1 | a2 |
+-----+--------+--------+
这里v1的形式是
v1: struct (nullable = true)
| |-- level1: string (nullable = true)
| |-- level2: string (nullable = true)
| |-- level3: string (nullable = true)
| |-- level4: string (nullable = true)
| |-- level5: string (nullable = true)
我在scala中使用spark sql。
是否可以通过编写一些sql查询或在数据框架上使用一些spark函数来完成所需的事情
下面是您可以使用的示例代码,它将生成以下输出:
代码如下:
val df1=sc.parallelize(Seq((0,"v1"),(0,"v2"),(1,"v3"),(1,"v1"))).toDF("id","values")
val df2=sc.parallelize(Seq((0,"a1","b1","-"),(1,"a2","-","b2"))).toDF("id","v1","v2","v3")
val joinedDF=df1.join(df2,"id")
val resultDF=joinedDF.rdd.map{row=>
val id=row.getAs[Int]("id")
val values=row.getAs[String]("values")
val feilds=row.getAs[String](values)
(id,values,feilds)
}.toDF("id","values","feilds")
在控制台测试时:
scala> val df1=sc.parallelize(Seq((0,"v1"),(0,"v2"),(1,"v3"),(1,"v1"))).toDF("id","values")
df1: org.apache.spark.sql.DataFrame = [id: int, values: string]
scala> df1.show
+---+------+
| id|values|
+---+------+
| 0| v1|
| 0| v2|
| 1| v3|
| 1| v1|
+---+------+
scala> val df2=sc.parallelize(Seq((0,"a1","b1","-"),(1,"a2","-","b2"))).toDF("id","v1","v2","v3")
df2: org.apache.spark.sql.DataFrame = [id: int, v1: string ... 2 more fields]
scala> df2.show
+---+---+---+---+
| id| v1| v2| v3|
+---+---+---+---+
| 0| a1| b1| -|
| 1| a2| -| b2|
+---+---+---+---+
scala> val joinedDF=df1.join(df2,"id")
joinedDF: org.apache.spark.sql.DataFrame = [id: int, values: string ... 3 more fields]
scala> joinedDF.show
+---+------+---+---+---+
| id|values| v1| v2| v3|
+---+------+---+---+---+
| 1| v3| a2| -| b2|
| 1| v1| a2| -| b2|
| 0| v1| a1| b1| -|
| 0| v2| a1| b1| -|
+---+------+---+---+---+
scala> val resultDF=joinedDF.rdd.map{row=>
| val id=row.getAs[Int]("id")
| val values=row.getAs[String]("values")
| val feilds=row.getAs[String](values)
| (id,values,feilds)
| }.toDF("id","values","feilds")
resultDF: org.apache.spark.sql.DataFrame = [id: int, values: string ... 1 more field]
scala>
scala> resultDF.show
+---+------+------+
| id|values|feilds|
+---+------+------+
| 1| v3| b2|
| 1| v1| a2|
| 0| v1| a1|
| 0| v2| b1|
+---+------+------+
我希望这可能是你的问题。谢谢!