我正在尝试将我的数据拟合为β二项式分布,并估计α和β形状参数。对于这个分布,先验是从贝塔分布中获取的。Python没有适用于beta二项式的拟合函数,但它适用于beta。pythonβ-拟合和Rβ-二项式拟合很接近,但系统性地偏离
R:
library("VGAM")
x = c(222,909,918,814,970,346,746,419,610,737,201,865,573,188,450,229,629,708,250,508)
y = c(2,18,45,11,41,38,22,7,40,24,34,21,49,35,31,44,20,28,39,17)
fit=vglm(cbind(y, x) ~ 1, betabinomialff, trace = TRUE)
Coef(fit)
shape1 shape2
1.736093 26.870768
python:
import scipy.stats
import numpy as np
x = np.array([222,909,918,814,970,346,746,419,610,737,201,865,573,188,450,229,629,708,250,508], dtype=float)
y = np.array([2,18,45,11,41,38,22,7,40,24,34,21,49,35,31,44,20,28,39,17])
scipy.stats.beta.fit((y)/(x+y), floc=0, fscale=1)
(1.5806623978910086, 24.031893492546242, 0, 1)
我已经做了很多次了,看起来python系统地比R结果低一点。我想知道这是我的输入错误,还是只是计算方式的差异?
您的问题是,拟合贝塔二项式模型与拟合值等于比率的贝塔模型不同。我将在这里用bbmle
包进行说明,它将适用于与VGAM
类似的模型(但我更熟悉它)。
准备工作:
library("VGAM") ## for dbetabinom.ab
x <- c(222,909,918,814,970,346,746,419,610,737,
201,865,573,188,450,229,629,708,250,508)
y <- c(2,18,45,11,41,38,22,7,40,24,34,21,49,35,31,44,20,28,39,17)
library("bbmle")
拟合贝塔二项式模型:
mle2(y~dbetabinom.ab(size=x+y,shape1,shape2),
data=data.frame(x,y),
start=list(shape1=2,shape2=30))
## Coefficients:
## shape1 shape2
## 1.736046 26.871526
这或多或少与您引用的VGAM
结果完全一致。
现在使用相同的框架来适应Beta模型:
mle2(y/(x+y) ~ dbeta(shape1,shape2),
data=data.frame(x,y),
start=list(shape1=2,shape2=30))
## Coefficients:
## shape1 shape2
## 1.582021 24.060570
这适合您的Python测试版结果。(我敢肯定,如果你使用VGAM
来适应Beta,你也会得到同样的答案。)
您可以将conjugate_prior
包用于python
请参阅硬币翻转示例的代码:
from conjugate_prior import BetaBinomial
heads = 95
tails = 105
prior_model = BetaBinomial() #Uninformative prior
updated_model = prior_model.update(heads, tails)
credible_interval = updated_model.posterior(0.45, 0.55)
print ("There's {p:.2f}% chance that the coin is fair".format(p=credible_interval*100))
predictive = updated_model.predict(50, 50)
print ("The chance of flipping 50 Heads and 50 Tails in 100 trials is {p:.2f}%".format(p=predictive*100))
代码取自此处