如何在NumPy数组中的特定列中乘以标量



我需要对水文地质野外工作的大型数据集做一些分析。我正在使用NumPy。我想知道怎样才能:

  1. 将数组的第二列乘以一个数字(例如5.2)。然后

  2. 计算该列数字的累加和。

正如我提到的,我只想处理一个特定的列,而不是整个数组。

 you can do this in two simple steps using NumPy:
>>> # multiply column 2 of the 2D array, A, by 5.2
>>> A[:,1] *= 5.2
>>> # assuming by 'cumulative sum' you meant the 'reduced' sum:
>>> A[:,1].sum()
>>> # if in fact you want the cumulative sum (ie, returns a new column)
>>> # then do this for the second step instead:
>>> NP.cumsum(A[:,1])

与一些模拟数据:

>>> A = NP.random.rand(8, 5)
>>> A
  array([[ 0.893,  0.824,  0.438,  0.284,  0.892],
         [ 0.534,  0.11 ,  0.409,  0.555,  0.96 ],
         [ 0.671,  0.817,  0.636,  0.522,  0.867],
         [ 0.752,  0.688,  0.142,  0.793,  0.716],
         [ 0.276,  0.818,  0.904,  0.767,  0.443],
         [ 0.57 ,  0.159,  0.144,  0.439,  0.747],
         [ 0.705,  0.793,  0.575,  0.507,  0.956],
         [ 0.322,  0.713,  0.963,  0.037,  0.509]])
>>> A[:,1] *= 5.2
>>> A
  array([[ 0.893,  4.287,  0.438,  0.284,  0.892],
         [ 0.534,  0.571,  0.409,  0.555,  0.96 ],
         [ 0.671,  4.25 ,  0.636,  0.522,  0.867],
         [ 0.752,  3.576,  0.142,  0.793,  0.716],
         [ 0.276,  4.255,  0.904,  0.767,  0.443],
         [ 0.57 ,  0.827,  0.144,  0.439,  0.747],
         [ 0.705,  4.122,  0.575,  0.507,  0.956],
         [ 0.322,  3.71 ,  0.963,  0.037,  0.509]])
>>> A[:,1].sum()
  25.596156138451427

只需要一些简单的规则来理解NumPy中的元素选择(索引):

  • NumPy,像Python一样,是基于0的,所以,例如,下面的"1"指的是第二列

  • 逗号分隔括号内的尺寸,因此[rows, columns],例如,A[2,3]表示第三行第四列的项("单元格")

  • 冒号表示该维度上的所有元素,例如,a[:,1]创建a的列2的视图;A[3,:]指第四行

当然:

import numpy as np
# Let a be some 2d array; here we just use dummy data 
# to illustrate the method
a = np.ones((10,5))
# Multiply just the 2nd column by 5.2 in-place
a[:,1] *= 5.2
# Now get the cumulative sum of just that column
csum = np.cumsum(a[:,1])

如果你不想在原地这样做,你需要一个稍微不同的策略:

b = 5.2*a[:,1]
csum = np.cumsum(b)

将常量与特定的列或行相乘:

import numpy as np;
X=np.ones(shape=(10,10),dtype=np.float64);
X;
### this is our default matrix
array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
   [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])

 ## now say we want to multiple it with 10
 X=X*10;
array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
   [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]])
### Now if, we want to mulitply 3,5, 7 column with 5
X[:,[3,5,7]]=X[:,[3,5,7]]*5
 array([[10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.],
   [10., 10., 10., 50., 10., 50., 10., 50., 10., 10.]])
类似地,我们可以对任何列执行此操作。

相关内容

  • 没有找到相关文章

最新更新