我有一个CUDA内核,它接受一个结构体列表。
kernel<<<blockCount,blockSize>>>(MyStruct *structs);
每个结构体包含3个指针。
typedef struct __align(16)__ {
float* pointer1;
float* pointer2;
float* pointer3;
}
我有三个包含浮点数的设备数组,结构体中的每个指针都指向三个设备数组中的一个浮点数。
结构体列表表示一个树/图结构,它允许内核执行递归操作,这取决于发送给内核的结构体列表的顺序。(此位在c++中工作,因此与我的问题无关)
我想做的是能够从JCuda发送我的指针结构。我明白,这是不可能的,除非它被平展到一个填充数组在这篇文章。
我理解在发送结构体列表时可能发生的对齐和填充的所有问题,它本质上是一个重复的填充数组,我很好。
我不知道怎么做,是填充我的扁平结构缓冲区与指针,例如,我认为我可以这样做:
Pointer A = ....(underlying device array1)
Pointer B = ....(underlying device array2)
Pointer C = ....(underlying device array3)
ByteBuffer structListBuffer = ByteBuffer.allocate(16*noSteps);
for(int x = 0; x<noSteps; x++) {
// Get the underlying pointer values
long pointer1 = A.withByteOffset(getStepOffsetA(x)).someGetUnderlyingPointerValueFunction();
long pointer2 = B.withByteOffset(getStepOffsetB(x)).someGetUnderlyingPointerValueFunction();
long pointer3 = C.withByteOffset(getStepOffsetC(x)).someGetUnderlyingPointerValueFunction();
// Build the struct
structListBuffer.asLongBuffer().append(pointer1);
structListBuffer.asLongBuffer().append(pointer2);
structListBuffer.asLongBuffer().append(pointer3);
structListBuffer.asLongBuffer().append(0); //padding
}
structListBuffer
将按照内核期望的方式包含一个结构体列表。
所以有任何方法做someGetUnderlyingPointerValueFunction()
从ByteBuffer?
如果我理解正确的话,问题的重点是是否存在像
这样的神奇函数long address = pointer.someGetUnderlyingPointerValueFunction();
返回本机指针的地址。
简短的回答是:不,没有这样的函数。
(旁注:一个类似的功能已经在相当长的一段时间以前被要求,但我还没有添加它。主要是因为这样的函数对于指向Java数组或(非直接)字节缓冲区的指针没有意义。此外,手动处理结构体及其填充和对齐,32位和64位机器上不同大小的指针,以及大或小端序的缓冲区,是一个无休止的头痛来源。但我明白了这一点,以及可能的应用案例,所以我很可能会添加getAddress()
函数之类的东西。也许只对CUdeviceptr
类,它肯定是有意义的-至少比在Pointer
类。人们将使用这个方法做一些奇怪的事情,他们将做一些会导致VM严重崩溃的事情,但是JCuda本身是一个如此薄的抽象层,无论如何在这方面没有安全网…)
也就是说,您可以使用如下方法绕过当前的限制:
private static long getPointerAddress(CUdeviceptr p)
{
// WORKAROUND until a method like CUdeviceptr#getAddress exists
class PointerWithAddress extends Pointer
{
PointerWithAddress(Pointer other)
{
super(other);
}
long getAddress()
{
return getNativePointer() + getByteOffset();
}
}
return new PointerWithAddress(p).getAddress();
}
当然,这是丑陋的,显然与getNativePointer()
和getByteOffset()
方法protected
的意图相矛盾。但它最终可能会被一些"官方"方法所取代:
private static long getPointerAddress(CUdeviceptr p)
{
return p.getAddress();
}
,到目前为止,这可能是最接近C端所能做的解决方案。
下面是我为测试这一点而写的一个例子。内核只是一个虚拟内核,它用"可识别"的值填充结构(看看它们是否在正确的位置结束),并且应该只有一个线程启动:
typedef struct __declspec(align(16)) {
float* pointer1;
float* pointer2;
float* pointer3;
} MyStruct;
extern "C"
__global__ void kernel(MyStruct *structs)
{
structs[0].pointer1[0] = 1.0f;
structs[0].pointer1[1] = 1.1f;
structs[0].pointer1[2] = 1.2f;
structs[0].pointer2[0] = 2.0f;
structs[0].pointer2[1] = 2.1f;
structs[0].pointer2[2] = 2.2f;
structs[0].pointer3[0] = 3.0f;
structs[0].pointer3[1] = 3.1f;
structs[0].pointer3[2] = 3.2f;
structs[1].pointer1[0] = 11.0f;
structs[1].pointer1[1] = 11.1f;
structs[1].pointer1[2] = 11.2f;
structs[1].pointer2[0] = 12.0f;
structs[1].pointer2[1] = 12.1f;
structs[1].pointer2[2] = 12.2f;
structs[1].pointer3[0] = 13.0f;
structs[1].pointer3[1] = 13.1f;
structs[1].pointer3[2] = 13.2f;
}
这个内核在下面的程序中启动(注意: PTX文件的编译是在这里动态完成的,其设置可能与您的应用程序不匹配。如有疑问,您可以手动编译PTX文件)。
每个结构体的pointer1
, pointer2
和pointer3
指针被初始化,使它们分别指向设备缓冲区A
, B
和C
的连续元素,每个元素都有一个偏移量,允许识别内核写入的值。(请注意,我试图处理在32位或64位机器上运行此程序的两种可能情况,这意味着不同的指针大小-尽管目前我只能测试32位版本)
import static jcuda.driver.JCudaDriver.*;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;
import java.nio.LongBuffer;
import java.util.Arrays;
import jcuda.Pointer;
import jcuda.Sizeof;
import jcuda.driver.CUcontext;
import jcuda.driver.CUdevice;
import jcuda.driver.CUdeviceptr;
import jcuda.driver.CUfunction;
import jcuda.driver.CUmodule;
import jcuda.driver.JCudaDriver;
public class JCudaPointersInStruct
{
public static void main(String args[]) throws IOException
{
JCudaDriver.setExceptionsEnabled(true);
String ptxFileName = preparePtxFile("JCudaPointersInStructKernel.cu");
cuInit(0);
CUdevice device = new CUdevice();
cuDeviceGet(device, 0);
CUcontext context = new CUcontext();
cuCtxCreate(context, 0, device);
CUmodule module = new CUmodule();
cuModuleLoad(module, ptxFileName);
CUfunction function = new CUfunction();
cuModuleGetFunction(function, module, "kernel");
int numElements = 9;
CUdeviceptr A = new CUdeviceptr();
cuMemAlloc(A, numElements * Sizeof.FLOAT);
cuMemsetD32(A, 0, numElements);
CUdeviceptr B = new CUdeviceptr();
cuMemAlloc(B, numElements * Sizeof.FLOAT);
cuMemsetD32(B, 0, numElements);
CUdeviceptr C = new CUdeviceptr();
cuMemAlloc(C, numElements * Sizeof.FLOAT);
cuMemsetD32(C, 0, numElements);
int numSteps = 2;
int sizeOfStruct = Sizeof.POINTER * 4;
ByteBuffer hostStructsBuffer =
ByteBuffer.allocate(numSteps * sizeOfStruct);
if (Sizeof.POINTER == 4)
{
IntBuffer b = hostStructsBuffer.order(
ByteOrder.nativeOrder()).asIntBuffer();
for(int x = 0; x<numSteps; x++)
{
CUdeviceptr pointer1 = A.withByteOffset(getStepOffsetA(x));
CUdeviceptr pointer2 = B.withByteOffset(getStepOffsetB(x));
CUdeviceptr pointer3 = C.withByteOffset(getStepOffsetC(x));
//System.out.println("Step "+x+" pointer1 is "+pointer1);
//System.out.println("Step "+x+" pointer2 is "+pointer2);
//System.out.println("Step "+x+" pointer3 is "+pointer3);
b.put((int)getPointerAddress(pointer1));
b.put((int)getPointerAddress(pointer2));
b.put((int)getPointerAddress(pointer3));
b.put(0);
}
}
else
{
LongBuffer b = hostStructsBuffer.order(
ByteOrder.nativeOrder()).asLongBuffer();
for(int x = 0; x<numSteps; x++)
{
CUdeviceptr pointer1 = A.withByteOffset(getStepOffsetA(x));
CUdeviceptr pointer2 = B.withByteOffset(getStepOffsetB(x));
CUdeviceptr pointer3 = C.withByteOffset(getStepOffsetC(x));
//System.out.println("Step "+x+" pointer1 is "+pointer1);
//System.out.println("Step "+x+" pointer2 is "+pointer2);
//System.out.println("Step "+x+" pointer3 is "+pointer3);
b.put(getPointerAddress(pointer1));
b.put(getPointerAddress(pointer2));
b.put(getPointerAddress(pointer3));
b.put(0);
}
}
CUdeviceptr structs = new CUdeviceptr();
cuMemAlloc(structs, numSteps * sizeOfStruct);
cuMemcpyHtoD(structs, Pointer.to(hostStructsBuffer),
numSteps * sizeOfStruct);
Pointer kernelParameters = Pointer.to(
Pointer.to(structs)
);
cuLaunchKernel(function,
1, 1, 1,
1, 1, 1,
0, null, kernelParameters, null);
cuCtxSynchronize();
float hostA[] = new float[numElements];
cuMemcpyDtoH(Pointer.to(hostA), A, numElements * Sizeof.FLOAT);
float hostB[] = new float[numElements];
cuMemcpyDtoH(Pointer.to(hostB), B, numElements * Sizeof.FLOAT);
float hostC[] = new float[numElements];
cuMemcpyDtoH(Pointer.to(hostC), C, numElements * Sizeof.FLOAT);
System.out.println("A "+Arrays.toString(hostA));
System.out.println("B "+Arrays.toString(hostB));
System.out.println("C "+Arrays.toString(hostC));
}
private static long getStepOffsetA(int x)
{
return x * Sizeof.FLOAT * 4 + 0 * Sizeof.FLOAT;
}
private static long getStepOffsetB(int x)
{
return x * Sizeof.FLOAT * 4 + 1 * Sizeof.FLOAT;
}
private static long getStepOffsetC(int x)
{
return x * Sizeof.FLOAT * 4 + 2 * Sizeof.FLOAT;
}
private static long getPointerAddress(CUdeviceptr p)
{
// WORKAROUND until a method like CUdeviceptr#getAddress exists
class PointerWithAddress extends Pointer
{
PointerWithAddress(Pointer other)
{
super(other);
}
long getAddress()
{
return getNativePointer() + getByteOffset();
}
}
return new PointerWithAddress(p).getAddress();
}
//-------------------------------------------------------------------------
// Ignore this - in practice, you'll compile the PTX manually
private static String preparePtxFile(String cuFileName) throws IOException
{
int endIndex = cuFileName.lastIndexOf('.');
if (endIndex == -1)
{
endIndex = cuFileName.length()-1;
}
String ptxFileName = cuFileName.substring(0, endIndex+1)+"ptx";
File cuFile = new File(cuFileName);
if (!cuFile.exists())
{
throw new IOException("Input file not found: "+cuFileName);
}
String modelString = "-m"+System.getProperty("sun.arch.data.model");
String command =
"nvcc " + modelString + " -ptx -arch sm_11 -lineinfo "+
cuFile.getPath()+" -o "+ptxFileName;
System.out.println("Executingn"+command);
Process process = Runtime.getRuntime().exec(command);
String errorMessage =
new String(toByteArray(process.getErrorStream()));
String outputMessage =
new String(toByteArray(process.getInputStream()));
int exitValue = 0;
try
{
exitValue = process.waitFor();
}
catch (InterruptedException e)
{
Thread.currentThread().interrupt();
throw new IOException(
"Interrupted while waiting for nvcc output", e);
}
if (exitValue != 0)
{
System.out.println("nvcc process exitValue "+exitValue);
System.out.println("errorMessage:n"+errorMessage);
System.out.println("outputMessage:n"+outputMessage);
throw new IOException(
"Could not create .ptx file: "+errorMessage);
}
System.out.println("Finished creating PTX file");
return ptxFileName;
}
private static byte[] toByteArray(InputStream inputStream)
throws IOException
{
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte buffer[] = new byte[8192];
while (true)
{
int read = inputStream.read(buffer);
if (read == -1)
{
break;
}
baos.write(buffer, 0, read);
}
return baos.toByteArray();
}
}
结果如下所示:
A [1.0, 1.1, 1.2, 0.0, 11.0, 11.1, 11.2, 0.0, 0.0]
B [0.0, 2.0, 2.1, 2.2, 0.0, 12.0, 12.1, 12.2, 0.0]
C [0.0, 0.0, 3.0, 3.1, 3.2, 0.0, 13.0, 13.1, 13.2]