当尝试用y数据拟合随机森林回归模型时,看起来像这样:
[ 0.00000000e+00 1.36094276e+02 4.46608221e+03 8.72660888e+03
1.31375786e+04 1.73580193e+04 2.29420671e+04 3.12216341e+04
4.11395711e+04 5.07972062e+04 6.14904935e+04 7.34275322e+04
7.87333933e+04 8.46302456e+04 9.71074959e+04 1.07146672e+05
1.17187952e+05 1.26953374e+05 1.37736003e+05 1.47239359e+05
1.53943242e+05 1.78806710e+05 1.92657725e+05 2.08912711e+05
2.22855152e+05 2.34532982e+05 2.41391255e+05 2.48699216e+05
2.62421197e+05 2.79544300e+05 2.95550971e+05 3.13524275e+05
3.23365158e+05 3.24069067e+05 3.24472999e+05 3.24804951e+05
和X数据看起来像这样:
[ 735233.27082176 735234.27082176 735235.27082176 735236.27082176
735237.27082176 735238.27082176 735239.27082176 735240.27082176
735241.27082176 735242.27082176 735243.27082176 735244.27082176
735245.27082176 735246.27082176 735247.27082176 735248.27082176
,代码如下:
regressor = RandomForestRegressor(n_estimators=150, min_samples_split=1)
rgr = regressor.fit(X,y)
我得到这个错误:
ValueError: Number of labels=600 does not match number of samples=1
我假设我的一组值的格式是错误的,但它不是太清楚,我从文档
X
的形状应为[n_samples, n_features]
,可以通过
X
X = X[:, None]
它将您的样本列表X视为1个样本作为向量,因此以下工作
rgr = regressor.fit(map(lambda x: [x],X),y)
在numpy中使用vstack可能有更有效的方法。