Sklearn随机森林回归器错误



当尝试用y数据拟合随机森林回归模型时,看起来像这样:

[  0.00000000e+00   1.36094276e+02   4.46608221e+03   8.72660888e+03
   1.31375786e+04   1.73580193e+04   2.29420671e+04   3.12216341e+04
   4.11395711e+04   5.07972062e+04   6.14904935e+04   7.34275322e+04
   7.87333933e+04   8.46302456e+04   9.71074959e+04   1.07146672e+05
   1.17187952e+05   1.26953374e+05   1.37736003e+05   1.47239359e+05
   1.53943242e+05   1.78806710e+05   1.92657725e+05   2.08912711e+05
   2.22855152e+05   2.34532982e+05   2.41391255e+05   2.48699216e+05
   2.62421197e+05   2.79544300e+05   2.95550971e+05   3.13524275e+05
   3.23365158e+05   3.24069067e+05   3.24472999e+05   3.24804951e+05

和X数据看起来像这样:

[ 735233.27082176  735234.27082176  735235.27082176  735236.27082176
  735237.27082176  735238.27082176  735239.27082176  735240.27082176
  735241.27082176  735242.27082176  735243.27082176  735244.27082176
  735245.27082176  735246.27082176  735247.27082176  735248.27082176

,代码如下:

regressor = RandomForestRegressor(n_estimators=150, min_samples_split=1)
rgr = regressor.fit(X,y) 

我得到这个错误:

ValueError: Number of labels=600 does not match number of samples=1

我假设我的一组值的格式是错误的,但它不是太清楚,我从文档

X的形状应为[n_samples, n_features],可以通过

变换X
X = X[:, None]

它将您的样本列表X视为1个样本作为向量,因此以下工作

rgr = regressor.fit(map(lambda x: [x],X),y)

在numpy中使用vstack可能有更有效的方法。

相关内容

  • 没有找到相关文章

最新更新