我希望能够使用 Java 构建模型,我可以使用 CLI 作为 folowing:
./mahout trainlogistic --input Candy-Crush.twtr.csv
--output ./model
--target hd_click --categories 2
--predictors click_frequency country_code ctr device_price_range hd_conversion time_of_day num_clicks phone_type twitter is_weekend app_entertainment app_wallpaper app_widgets arcade books_and_reference brain business cards casual comics communication education entertainment finance game_wallpaper game_widgets health_and_fitness health_fitness libraries_and_demo libraries_demo lifestyle media_and_video media_video medical music_and_audio news_and_magazines news_magazines personalization photography productivity racing shopping social sports sports_apps sports_games tools transportation travel_and_local weather app_entertainment_percentage app_wallpaper_percentage app_widgets_percentage arcade_percentage books_and_reference_percentage brain_percentage business_percentage cards_percentage casual_percentage comics_percentage communication_percentage education_percentage entertainment_percentage finance_percentage game_wallpaper_percentage game_widgets_percentage health_and_fitness_percentage health_fitness_percentage libraries_and_demo_percentage libraries_demo_percentage lifestyle_percentage media_and_video_percentage media_video_percentage medical_percentage music_and_audio_percentage news_and_magazines_percentage news_magazines_percentage personalization_percentage photography_percentage productivity_percentage racing_percentage shopping_percentage social_percentage sports_apps_percentage sports_games_percentage sports_percentage tools_percentage transportation_percentage travel_and_local_percentage weather_percentage reads_magazine_sum reads_magazine_count interested_in_gardening_sum interested_in_gardening_count kids_birthday_coming_sum kids_birthday_coming_count job_seeker_sum job_seeker_count friends_sum friends_count married_sum married_count charity_donor_sum charity_donor_count student_sum student_count interested_in_real_estate_sum interested_in_real_estate_count sports_fan_sum sports_fan_count bascketball_sum bascketball_count interested_in_politics_sum interested_in_politics_count gamer_sum gamer_count activist_sum activist_count traveler_sum traveler_count likes_soccer_sum likes_soccer_count interested_in_celebs_sum interested_in_celebs_count auto_racing_sum auto_racing_count age_group_sum age_group_count healthy_lifestyle_sum healthy_lifestyle_count interested_in_finance_sum interested_in_finance_count sports_teams_usa_sum sports_teams_usa_count interested_in_deals_sum interested_in_deals_count business_oriented_sum business_oriented_count interested_in_cooking_sum interested_in_cooking_count music_lover_sum music_lover_count beauty_sum beauty_count follows_fashion_sum follows_fashion_count likes_wrestling_sum likes_wrestling_count name_sum name_count shopper_sum shopper_count golf_sum golf_count vegetarian_sum vegetarian_count dating_sum dating_count interested_in_fashion_sum interested_in_fashion_count interested_in_news_sum interested_in_news_count likes_tennis_sum likes_tennis_count male_sum male_count interested_in_cars_sum interested_in_cars_count follows_bloggers_sum follows_bloggers_count entertainment_sum entertainment_count interested_in_books_sum interested_in_books_count has_kids_sum has_kids_count interested_in_movies_sum interested_in_movies_count musicians_sum musicians_count tech_oriented_sum tech_oriented_count female_sum female_count has_pet_sum has_pet_count practicing_sports_sum practicing_sports_count
--types numeric word numeric word word word numeric word word word numeric
--features 100 --passes 1 --rate 50
我无法理解 20 个新闻组的例子,因为它需要学习。任何人都可以给我一个与 CLI 命令相同的代码吗?
澄清一下:
我需要这样的东西:
model.train(1,0,"monday",6,44,1,7,4,6,78,7,3,4,6,........,"good");
model.train(1,0,"sunday",6,44,5,7,9,2,4,6,78,7,3,4,6,........,"bad");
model.train(1,0,"monday",4,99,2,4,6,3,4,6,........,"good");
model.writeTofile("myModel.model");
如果您不熟悉分类,只想告诉我如何从 JAVA 执行 CLI 命令,请不要回答
我不是 100% 熟悉 Mahout API(我同意文档非常稀疏(,所以我只能给出指针,但我希望它有所帮助:
trainlogistic
示例的 Java 源代码实际上可以在mahout-examples
库中找到 - 它在 maven [0] (org.apache.mahout.classifier.sgd.TrainLogistic
中(。我想如果你愿意,你可以使用完全相同的源代码,但它取决于mahout-examples
库中的几个实用程序类(而且也不是很干净(。
在此示例中执行训练的类org.apache.mahout.classifier.sgd.OnlineLogisticRegression
[1],尽管考虑到您拥有的大量预测变量,您可能希望使用AdaptiveLogisticRegression
[2](相同的包(,它在内部使用许多OnlineLogisticRegression
。但是您必须亲自查看哪种数据最适合您的数据。
API 相当简单,有一个train
方法,它Vector
输入数据,一个classify
方法来测试你的模型,以及learningRate
和其他方法来更改模型的参数。
要像命令行工具一样将模型保存到磁盘,请使用 org.apache.mahout.classifier.sgd.ModelSerializer
,它具有一个简单的 API 来写入和读取模型。(OLR 类本身也有write
和readFields
方法,但坦率地说,我不确定它们的作用,或者是否有区别ModelSerializer
- 它们也没有记录在案。
最后,除了mahout-examples
中的源代码之外,这里还有两个直接使用Mahout API的例子,可能很有用[3,4]。
来源:
[0] http://repo1.maven.org/maven2/org/apache/mahout/mahout-examples/0.8/
[1] http://archive.cloudera.com/cdh4/cdh/4/mahout/mahout-core/org/apache/mahout/classifier/sgd/OnlineLogisticRegression.html
[2] http://archive.cloudera.com/cdh4/cdh/4/mahout/mahout-core/org/apache/mahout/classifier/sgd/AdaptiveLogisticRegression.html
[3] http://mail-archives.apache.org/mod_mbox/mahout-user/201206.mbox/%3CCAJwFCa3X2fL_SRxT7f7v9uMjS3Tc9WrT7vuMQCVXyH71k0H0zQ@mail.gmail.com%3E
[4] http://skife.org/mahout/2013/02/14/first_steps_with_mahout.html
这个博客有一篇关于如何使用Mahout Java API进行训练和分类的好文章: http://nigap.blogspot.com/2012/02/bayes-algorithm-with-apache-mahout.html
您可以使用 Runtime.exec 从 java 执行相同的 cmd 行。
简单的方法是:
Process p = Runtime.getRuntime().exec("/usr/bin/bash -ic "<path_to_mahout>/mahout trainlogistic --input Candy-Crush.twtr.csv "
+ "--output ./model "
+ "--target hd_click --categories 2 "
+ "--predictors click_frequency country_code ctr device_price_range hd_conversion time_of_day num_clicks phone_type twitter is_weekend app_entertainment app_wallpaper app_widgets arcade books_and_reference brain business cards casual comics communication education entertainment finance game_wallpaper game_widgets health_and_fitness health_fitness libraries_and_demo libraries_demo lifestyle media_and_video media_video medical music_and_audio news_and_magazines news_magazines personalization photography productivity racing shopping social sports sports_apps sports_games tools transportation travel_and_local weather app_entertainment_percentage app_wallpaper_percentage app_widgets_percentage arcade_percentage books_and_reference_percentage brain_percentage business_percentage cards_percentage casual_percentage comics_percentage communication_percentage education_percentage entertainment_percentage finance_percentage game_wallpaper_percentage game_widgets_percentage health_and_fitness_percentage health_fitness_percentage libraries_and_demo_percentage libraries_demo_percentage lifestyle_percentage media_and_video_percentage media_video_percentage medical_percentage music_and_audio_percentage news_and_magazines_percentage news_magazines_percentage personalization_percentage photography_percentage productivity_percentage racing_percentage shopping_percentage social_percentage sports_apps_percentage sports_games_percentage sports_percentage tools_percentage transportation_percentage travel_and_local_percentage weather_percentage reads_magazine_sum reads_magazine_count interested_in_gardening_sum interested_in_gardening_count kids_birthday_coming_sum kids_birthday_coming_count job_seeker_sum job_seeker_count friends_sum friends_count married_sum married_count charity_donor_sum charity_donor_count student_sum student_count interested_in_real_estate_sum interested_in_real_estate_count sports_fan_sum sports_fan_count bascketball_sum bascketball_count interested_in_politics_sum interested_in_politics_count gamer_sum gamer_count activist_sum activist_count traveler_sum traveler_count likes_soccer_sum likes_soccer_count interested_in_celebs_sum interested_in_celebs_count auto_racing_sum auto_racing_count age_group_sum age_group_count healthy_lifestyle_sum healthy_lifestyle_count interested_in_finance_sum interested_in_finance_count sports_teams_usa_sum sports_teams_usa_count interested_in_deals_sum interested_in_deals_count business_oriented_sum business_oriented_count interested_in_cooking_sum interested_in_cooking_count music_lover_sum music_lover_count beauty_sum beauty_count follows_fashion_sum follows_fashion_count likes_wrestling_sum likes_wrestling_count name_sum name_count shopper_sum shopper_count golf_sum golf_count vegetarian_sum vegetarian_count dating_sum dating_count interested_in_fashion_sum interested_in_fashion_count interested_in_news_sum interested_in_news_count likes_tennis_sum likes_tennis_count male_sum male_count interested_in_cars_sum interested_in_cars_count follows_bloggers_sum follows_bloggers_count entertainment_sum entertainment_count interested_in_books_sum interested_in_books_count has_kids_sum has_kids_count interested_in_movies_sum interested_in_movies_count musicians_sum musicians_count tech_oriented_sum tech_oriented_count female_sum female_count has_pet_sum has_pet_count practicing_sports_sum practicing_sports_count "
+ "--types numeric word numeric word word word numeric word word word numeric "
+ "--features 100 --passes 1 --rate 50"");
如果您选择这个,那么我建议先阅读以下内容:当 Runtime.exec(( 不会
这样,应用程序将在不同的进程中运行。
此外,您可以按照以下站点中的"与您的应用程序集成"部分进行操作:推荐器文档
这也是编写推荐者的良好参考:介绍 Apache Mahout
希望这有帮助。干杯