Spark DataFrame aggregation



我有以下代码:

public class IPCCodes {
public static class IPCCount implements Serializable {
    public IPCCount(long permid, int year, int count, String ipc) {
        this.permid = permid;
        this.year = year;
        this.count = count;
        this.ipc = ipc;
    }
    public long permid;
    public int year;
    public int count;
    public String ipc;
}
public static void main(String[] args) {
    SparkConf sparkConf = new SparkConf().setAppName("IPC codes");
    JavaSparkContext sc = new JavaSparkContext(sparkConf);
    HiveContext sqlContext = new org.apache.spark.sql.hive.HiveContext(sc.sc());
    DataFrame df = sqlContext.sql("SELECT * FROM test.some_table WHERE year>2004");
    JavaRDD<Row> rdd = df.javaRDD();
    JavaRDD<IPCCount> map = rdd.flatMap(new FlatMapFunction<Row, IPCCount>() {
        @Override
        public Iterable<IPCCount> call(Row row) throws Exception {
            List<IPCCount> counts = new ArrayList<>();
            try {
                String codes = row.getString(7);
                for (String s : codes.split(",")) {
                    if(s.length()>4){
                        counts.add(new IPCCount(row.getLong(4), row.getInt(6), 1, s.substring(0, 4)));
                    }
                }
            } catch (NumberFormatException e) {
                System.out.println(e.getMessage());
            }
            return counts;
        }
    });

我从配置单元表创建了DataFrame,并应用flatMap函数来分割ipc代码(该字段是配置单元表中的字符串数组),之后我需要每个permid和年份的聚合代码,结果表应该是permid/year/ipc/count。

最有效的方法是什么?

如果想要DataFrame作为输出,那么没有充分的理由使用RDDflatMap。据我所知,使用基本的Spark SQL函数可以轻松处理所有事情。使用Scala:

import org.apache.spark.sql.functions.{col, explode, length, split, substring}
val transformed = df
  .select(col("permid"), col("year"),
    // Split ipc and explode into multiple rows
    explode(split(col("ipc"), ",")).alias("code")) 
  .where(length(col("code")).gt(4)) // filter
  .withColumn("code", substring(col("code"), 0, 4))
transformed.groupBy(col("permid"), col("year"), col("code")).count

相关内容

  • 没有找到相关文章

最新更新