我正在尝试将sklearn预测添加到pandas数据帧中,以便对预测进行全面评估。相关代码如下:
clf = linear_model.LinearRegression()
clf.fit(Xtrain,ytrain)
ypred = pd.DataFrame({'pred_lin_regr': pd.Series(clf.predict(Xtest))})
数据帧如下所示:
Xtest
axial_MET cos_theta_r1 deltaE_abs lep1_eta lep1_pT lep2_eta
8000 1.383026 0.332365 1.061852 0.184027 0.621598 -0.316297
8001 -1.054412 0.046317 1.461788 -1.141486 0.488133 1.011445
8002 0.259077 0.429920 0.769219 0.631206 0.353469 1.027781
8003 -0.096647 0.066200 0.411222 -0.867441 0.856115 -1.357888
8004 0.145412 0.371409 1.111035 1.374081 0.485231 0.900024
ytest
8000 1
8001 0
8002 0
8003 0
8004 0
ypred
pred_lin_regr
0 0.461636
1 0.314448
2 0.363751
3 0.291858
4 0.416056
连接Xtest和ytest效果良好:
df_total = pd.concat([Xtest, ytest], axis=1)
但是事件信息在ypred上丢失。
要做到这一点,必须采用什么样的python/pandas/numpy方式?
我正在使用以下版本:
argparse==1.2.1
cycler==0.9.0
decorator==4.0.4
ipython==4.0.0
ipython-genutils==0.1.0
matplotlib==1.5.0
nose==1.3.7
numpy==1.10.1
pandas==0.17.0
path.py==8.1.2
pexpect==4.0.1
pickleshare==0.5
ptyprocess==0.5
py==1.4.30
pyparsing==2.0.5
pytest==2.8.2
python-dateutil==2.4.2
pytz==2015.7
scikit-learn==0.16.1
scipy==0.16.1
simplegeneric==0.8.1
six==1.10.0
sklearn==0.0
traitlets==4.0.0
wsgiref==0.1.2
我尝试了以下方法:
df_total["pred_lin_regr"] = clf.predict(Xtest)
似乎完成了任务,但我想我不能确定事件是否正确匹配
您的第二行df_total["pred_lin_regr"] = clf.predict(Xtest)
是正确的,而且它更高效。
在这个例子中,您获取clf.predict()
的输出,它恰好是一个数组,并将其添加到数据帧中。从数组本身接收的输出按顺序与Xtest
匹配,因为是这样,将其添加到numpy数组中不会更改或更改该顺序。
以下是这个例子的一点证明:
采取以下保护措施:
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
print(regr.predict(diabetes_X_test))
df = pd.DataFrame(regr.predict(diabetes_X_test))
print(df)
第一个print()
函数将按预期为我们提供一个numpy数组:
[ 225.9732401 115.74763374 163.27610621 114.73638965 120.80385422
158.21988574 236.08568105 121.81509832 99.56772822 123.83758651
204.73711411 96.53399594 154.17490936 130.91629517 83.3878227
171.36605897 137.99500384 137.99500384 189.56845268 84.3990668 ]
该顺序与第二个print()
函数相同,在该函数中,我们将结果添加到数据帧:
0
0 225.973240
1 115.747634
2 163.276106
3 114.736390
4 120.803854
5 158.219886
6 236.085681
7 121.815098
8 99.567728
9 123.837587
10 204.737114
11 96.533996
12 154.174909
13 130.916295
14 83.387823
15 171.366059
16 137.995004
17 137.995004
18 189.568453
19 84.399067
重新运行测试的一部分代码,会给我们同样有序的结果:
print(regr.predict(diabetes_X_test[0:5]))
df = pd.DataFrame(regr.predict(diabetes_X_test[0:5]))
print(df)
[ 225.9732401 115.74763374 163.27610621 114.73638965 120.80385422]
0
0 225.973240
1 115.747634
2 163.276106
3 114.736390
4 120.803854