map reduce的输入文件格式



我对hadoop很陌生,有人知道我应该在(/user/gates/pages)页面文件夹中保留什么吗?我应该保留包含数据的文本文件吗?如果只有txt文件,的格式是什么

我应该在[FileInputFormat.addInputPath(lp, new Path("/user/gates/pages"));]页面文件中保存哪些数据。用户名或年龄或网站名称你能提供输入文件的详细信息吗

    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.Iterator;
    import java.util.List;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.Writable;
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.KeyValueTextInputFormat;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.RecordReader;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.SequenceFileInputFormat;
    import org.apache.hadoop.mapred.SequenceFileOutputFormat;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.jobcontrol.Job;
    import org.apache.hadoop.mapred.jobcontrol.JobControl;
    import org.apache.hadoop.mapred.lib.IdentityMapper;
    public class MRExample {
        public static class LoadPages extends MapReduceBase
            implements Mapper<LongWritable, Text, Text, Text> {
            public void map(LongWritable k, Text val,
                    OutputCollector<Text, Text> oc,
                    Reporter reporter) throws IOException {
                // Pull the key out
                String line = val.toString();
                int firstComma = line.indexOf(',');
                String key = line.substring(0, firstComma);
                String value = line.substring(firstComma + 1);
                Text outKey = new Text(key);
                // Prepend an index to the value so we know which file
                // it came from.
                Text outVal = new Text("1" + value);
                oc.collect(outKey, outVal);
            }
        }
        public static class LoadAndFilterUsers extends MapReduceBase
            implements Mapper<LongWritable, Text, Text, Text> {
            public void map(LongWritable k, Text val,
                    OutputCollector<Text, Text> oc,
                    Reporter reporter) throws IOException {
                // Pull the key out
                String line = val.toString();
                int firstComma = line.indexOf(',');
                String value = line.substring(firstComma + 1);
                int age = Integer.parseInt(value);
                if (age < 18 || age > 25) return;
                String key = line.substring(0, firstComma);
                Text outKey = new Text(key);
                // Prepend an index to the value so we know which file
                // it came from.
                Text outVal = new Text("2" + value);
                oc.collect(outKey, outVal);
            }
        }
        public static class Join extends MapReduceBase
            implements Reducer<Text, Text, Text, Text> {
            public void reduce(Text key,
                    Iterator<Text> iter, 
                    OutputCollector<Text, Text> oc,
                    Reporter reporter) throws IOException {
                // For each value, figure out which file it's from and store it
                // accordingly.
                List<String> first = new ArrayList<String>();
                List<String> second = new ArrayList<String>();
                while (iter.hasNext()) {
                    Text t = iter.next();
                    String value = t.toString();
                    if (value.charAt(0) == '1') first.add(value.substring(1));
                    else second.add(value.substring(1));
                    reporter.setStatus("OK");
                }
                // Do the cross product and collect the values
                for (String s1 : first) {
                    for (String s2 : second) {
                        String outval = key + "," + s1 + "," + s2;
                        oc.collect(null, new Text(outval));
                        reporter.setStatus("OK");
                    }
                }
            }
        }
        public static class LoadJoined extends MapReduceBase
            implements Mapper<Text, Text, Text, LongWritable> {
            public void map(
                    Text k,
                    Text val,
                    OutputCollector<Text, LongWritable> oc,
                    Reporter reporter) throws IOException {
                // Find the url
                String line = val.toString();
                int firstComma = line.indexOf(',');
                int secondComma = line.indexOf(',', firstComma);
                String key = line.substring(firstComma, secondComma);
                // drop the rest of the record, I don't need it anymore,
                // just pass a 1 for the combiner/reducer to sum instead.
                Text outKey = new Text(key);
                oc.collect(outKey, new LongWritable(1L));
            }
        }
        public static class ReduceUrls extends MapReduceBase
            implements Reducer<Text, LongWritable, WritableComparable, Writable> {
            public void reduce(
                    Text key,
                    Iterator<LongWritable> iter, 
                    OutputCollector<WritableComparable, Writable> oc,
                    Reporter reporter) throws IOException {
                // Add up all the values we see
                long sum = 0;
                while (iter.hasNext()) {
                    sum += iter.next().get();
                    reporter.setStatus("OK");
                }
                oc.collect(key, new LongWritable(sum));
            }
        }
        public static class LoadClicks extends MapReduceBase
            implements Mapper<WritableComparable, Writable, LongWritable, Text> {
            public void map(
                    WritableComparable key,
                    Writable val,
                    OutputCollector<LongWritable, Text> oc,
                    Reporter reporter) throws IOException {
                oc.collect((LongWritable)val, (Text)key);
            }
        }
        public static class LimitClicks extends MapReduceBase
            implements Reducer<LongWritable, Text, LongWritable, Text> {
            int count = 0;
            public void reduce(
                LongWritable key,
                Iterator<Text> iter,
                OutputCollector<LongWritable, Text> oc,
                Reporter reporter) throws IOException {
                // Only output the first 100 records
                while (count < 100 && iter.hasNext()) {
                    oc.collect(key, iter.next());
                    count++;
                }
            }
        }
        public static void main(String[] args) throws IOException {
            JobConf lp = new JobConf(MRExample.class);
            lp.setJobName("Load Pages");
            lp.setInputFormat(TextInputFormat.class);
            lp.setOutputKeyClass(Text.class);
            lp.setOutputValueClass(Text.class);
            lp.setMapperClass(LoadPages.class);
            FileInputFormat.addInputPath(lp, new Path("/user/gates/pages"));
            FileOutputFormat.setOutputPath(lp,
                new Path("/user/gates/tmp/indexed_pages"));
            lp.setNumReduceTasks(0);
            Job loadPages = new Job(lp);
            JobConf lfu = new JobConf(MRExample.class);
            lfu.setJobName("Load and Filter Users");
            lfu.setInputFormat(TextInputFormat.class);
            lfu.setOutputKeyClass(Text.class);
            lfu.setOutputValueClass(Text.class);
            lfu.setMapperClass(LoadAndFilterUsers.class);
            FileInputFormat.addInputPath(lfu, new Path("/user/gates/users"));
            FileOutputFormat.setOutputPath(lfu,
                new Path("/user/gates/tmp/filtered_users"));
            lfu.setNumReduceTasks(0);
            Job loadUsers = new Job(lfu);
            JobConf join = new JobConf(MRExample.class);
            join.setJobName("Join Users and Pages");
            join.setInputFormat(KeyValueTextInputFormat.class);
            join.setOutputKeyClass(Text.class);
            join.setOutputValueClass(Text.class);
            join.setMapperClass(IdentityMapper.class);
            join.setReducerClass(Join.class);
            FileInputFormat.addInputPath(join, new Path("/user/gates/tmp/indexed_pages"));
            FileInputFormat.addInputPath(join, new Path("/user/gates/tmp/filtered_users"));
            FileOutputFormat.setOutputPath(join, new Path("/user/gates/tmp/joined"));
            join.setNumReduceTasks(50);
            Job joinJob = new Job(join);
            joinJob.addDependingJob(loadPages);
            joinJob.addDependingJob(loadUsers);
            JobConf group = new JobConf(MRExample.class);
            group.setJobName("Group URLs");
            group.setInputFormat(KeyValueTextInputFormat.class);
            group.setOutputKeyClass(Text.class);
            group.setOutputValueClass(LongWritable.class);
            group.setOutputFormat(SequenceFileOutputFormat.class);
            group.setMapperClass(LoadJoined.class);
            group.setCombinerClass(ReduceUrls.class);
            group.setReducerClass(ReduceUrls.class);
            FileInputFormat.addInputPath(group, new Path("/user/gates/tmp/joined"));
            FileOutputFormat.setOutputPath(group, new Path("/user/gates/tmp/grouped"));
            group.setNumReduceTasks(50);
            Job groupJob = new Job(group);
            groupJob.addDependingJob(joinJob);
            JobConf top100 = new JobConf(MRExample.class);
            top100.setJobName("Top 100 sites");
            top100.setInputFormat(SequenceFileInputFormat.class);
            top100.setOutputKeyClass(LongWritable.class);
            top100.setOutputValueClass(Text.class);
            top100.setOutputFormat(SequenceFileOutputFormat.class);
            top100.setMapperClass(LoadClicks.class);
            top100.setCombinerClass(LimitClicks.class);
            top100.setReducerClass(LimitClicks.class);
            FileInputFormat.addInputPath(top100, new Path("/user/gates/tmp/grouped"));
            FileOutputFormat.setOutputPath(top100, new Path("/user/gates/top100sitesforusers18to25"));
            top100.setNumReduceTasks(1);
            Job limit = new Job(top100);
            limit.addDependingJob(groupJob);
            JobControl jc = new JobControl("Find top 100 sites for users 18 to 25");
            jc.addJob(loadPages);
            jc.addJob(loadUsers);
            jc.addJob(joinJob);
            jc.addJob(groupJob);
            jc.addJob(limit);
            jc.run();
        }
    }
FileInputFormat.addInputPath(lp, new Path("/user/gates/pages"));
...
FileInputFormat.addInputPath(lfu, new Path("/user/gates/users"));

这是它期望在HDFS中找到的两个硬编码文件,用于输出:

FileOutputFormat.setOutputPath(top100, new Path("/user/gates/top100sitesforusers18to25"));

相关内容

  • 没有找到相关文章

最新更新