我需要一些关于Flink Streaming的帮助。我在下面生成了一个简单的Hello世界类型的代码。这将从RabbitMQ流式传输Avro消息,并将其持久化到HDFS。我希望有人能复习一下代码,也许它能帮助其他人。
我发现的大多数Flink流式传输的例子都会将结果发送到std-out。实际上我想把数据保存到Hadoop中。我读到,理论上,你可以和Flink一起流到任何你喜欢的地方。实际上,我还没有发现任何将数据保存到HDFS的例子。但是,根据我发现的例子,以及试验和错误,我得到了以下代码。
这里的数据源是RabbitMQ。我使用客户端应用程序将"MyAvroObjects"发送到RabbitMQ。MyAvroObject.java(不包括在内)是从avro IDL生成的。。。可以是任何avro消息。
下面的代码使用RabbitMQ消息,并将其保存到HDFS中,作为avro文件。。。这就是我所希望的。
package com.johanw.flink.stackoverflow;
import java.io.IOException;
import org.apache.avro.io.Decoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroOutputFormat;
import org.apache.avro.mapred.AvroWrapper;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.hadoop.mapred.HadoopOutputFormat;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.FileSinkFunctionByMillis;
import org.apache.flink.streaming.connectors.rabbitmq.RMQSource;
import org.apache.flink.streaming.util.serialization.DeserializationSchema;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class RMQToHadoop {
public class MyDeserializationSchema implements DeserializationSchema<MyAvroObject> {
private static final long serialVersionUID = 1L;
@Override
public TypeInformation<MyAvroObject> getProducedType() {
return TypeExtractor.getForClass(MyAvroObject.class);
}
@Override
public MyAvroObject deserialize(byte[] array) throws IOException {
SpecificDatumReader<MyAvroObject> reader = new SpecificDatumReader<MyAvroObject>(MyAvroObject.getClassSchema());
Decoder decoder = DecoderFactory.get().binaryDecoder(array, null);
MyAvroObject MyAvroObject = reader.read(null, decoder);
return MyAvroObject;
}
@Override
public boolean isEndOfStream(MyAvroObject arg0) {
return false;
}
}
private String hostName;
private String queueName;
public final static String path = "/hdfsroot";
private static Logger logger = LoggerFactory.getLogger(RMQToHadoop.class);
public RMQToHadoop(String hostName, String queueName) {
super();
this.hostName = hostName;
this.queueName = queueName;
}
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
public void run() {
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
logger.info("Running " + RMQToHadoop.class.getName());
DataStream<MyAvroObject> socketStockStream = env.addSource(new RMQSource<>(hostName, queueName, new MyDeserializationSchema()));
Job job;
try {
job = Job.getInstance();
AvroJob.setInputKeySchema(job, MyAvroObject.getClassSchema());
} catch (IOException e1) {
e1.printStackTrace();
}
try {
JobConf jobConf = new JobConf(Job.getInstance().getConfiguration());
jobConf.set("avro.output.schema", MyAvroObject.getClassSchema().toString());
org.apache.avro.mapred.AvroOutputFormat<MyAvroObject> akof = new AvroOutputFormat<MyAvroObject>();
HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable> hof = new HadoopOutputFormat<AvroWrapper<MyAvroObject>, NullWritable>(akof, jobConf);
FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>> fileSinkFunctionByMillis = new FileSinkFunctionByMillis<Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>(hof, 10000l);
org.apache.hadoop.mapred.FileOutputFormat.setOutputPath(jobConf, new Path(path));
socketStockStream.map(new MapFunction<MyAvroObject, Tuple2<AvroWrapper<MyAvroObject>, NullWritable>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<AvroWrapper<MyAvroObject>, NullWritable> map(MyAvroObject envelope) throws Exception {
logger.info("map");
AvroKey<MyAvroObject> key = new AvroKey<MyAvroObject>(envelope);
Tuple2<AvroWrapper<MyAvroObject>, NullWritable> tupple = new Tuple2<AvroWrapper<MyAvroObject>, NullWritable>(key, NullWritable.get());
return tupple;
}
}).addSink(fileSinkFunctionByMillis);
try {
env.execute();
} catch (Exception e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
} catch (IOException e) {
logger.error("Error while running " + RMQToHadoop.class + ".", e);
}
}
public static void main(String[] args) throws IOException {
RMQToHadoop toHadoop = new RMQToHadoop("localhost", "rabbitTestQueue");
toHadoop.run();
}
}
如果您更喜欢RabbitMQ以外的其他源,那么使用其他源可以很好地工作。例如,使用Kafka消费者:
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer082;
...
DataStreamSource<MyAvroObject> socketStockStream = env.addSource(new FlinkKafkaConsumer082<MyAvroObject>(topic, new MyDeserializationSchema(), sourceProperties));
问题:
请复习。这是将数据保存到HDFS的良好做法吗?
如果流媒体的过程导致了一个问题,比如说在连载过程中。它生成和异常,然后代码就退出了。Spark流依赖于Yarn自动重启应用程序。这也是使用Flink时的好做法吗?
我正在使用FileSinkFunctionByMillis。实际上,我希望使用类似HdfsSinkFunction的东西,但这并不存在。所以FileSinkFunctionByMillis是最接近这一点的,这对我来说很有意义。同样,我发现的文档没有任何解释,所以我只是猜测。
当我在本地运行它时,我会发现一个目录结构,比如"C:\hdfsroot_temporary\0_temporary \temppt__0000_r_000001_0",它是…basare。有什么想法吗?
顺便说一句,当你想把数据保存回Kafka时,我可以用。。。
Properties destProperties = new Properties();
destProperties.setProperty("bootstrap.servers", bootstrapServers);
FlinkKafkaProducer<MyAvroObject> kafkaProducer = new FlinkKafkaProducer<L3Result>("MyKafkaTopic", new MySerializationSchema(), destProperties);
非常感谢!!!!
我认为可以使用FileSinkFunctionByMillis
,但这意味着流媒体程序是不容错的。这意味着,如果你的源代码、机器或写入失败,那么你的程序将崩溃,无法恢复。
我建议您考虑使用RollingSink
(https://ci.apache.org/projects/flink/flink-docs-release-0.10/apis/streaming_guide.html#hadoop-文件系统)。这可以用来创建类似Flum的管道,将数据摄入HDFS(或其他文件系统)。滚动接收器是一个可恢复的接收器,这意味着你的程序是容错的,因为Kafka消费者也是容错的。此外,您还可以指定一个自定义Writer
来以您想要的任何格式写入数据,例如Avro。