np_utils.to_categorical Reverse


import numpy as np
from keras.utils import np_utils
nsample = 100
sample_space = ["HOME","DRAW","AWAY"]
array = np.random.choice(sample_space, nsample, )
uniques, coded_id = np.unique(array, return_inverse=True)
coded_array = np_utils.to_categorical(coded_id)

例子输入

 ['AWAY', 'HOME', 'DRAW', 'AWAY', ...]
输出coded_array

[[ 0.  1.  0.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 ..., 
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 1.  0.  0.]]

如何反向处理并从coded_array获得原始数据?

您可以使用np.argmax来检索那些ids,然后简单地索引到uniques应该会给您原始数组。因此,我们将有这样一个实现:

uniques[y_code.argmax(1)]

示例运行-

In [44]: arr
Out[44]: array([5, 7, 3, 2, 4, 3, 7])
In [45]: uniques, ids = np.unique(arr, return_inverse=True)
In [46]: y_code = np_utils.to_categorical(ids, len(uniques))
In [47]: uniques[y_code.argmax(1)]
Out[47]: array([5, 7, 3, 2, 4, 3, 7])

相关内容

  • 没有找到相关文章

最新更新