熊猫根据日期范围分解列



我有一个数据帧,如下所示:

Col1    6/13/2020-6/15/2020 6/16/2020
A1      2.3                 1.65
A2      1.4                 1.4
A3      1.3                 1.3

我想在存在日期范围时分解列,该日期范围由列名称中存在-表示。

期望的结果如下:

Col1    6/13/2020   6/14/2020   6/15/2020   6/16/2020
A1     2.3          2.3         2.3         1.65
A2     1.4          1.4         1.4         1.4
A3     1.3          1.3         1.3         1.3

我不确定如何在列中爆炸它。

我们仍然explode

s=df.set_index('Col1').T.reset_index()
s
Out[49]: 
Col1                index    A1   A2   A3
0     6/13/2020-6/15/2020  2.30  1.4  1.3
1               6/16/2020  1.65  1.4  1.3
s['index']=[pd.date_range(x.split('-')[0],x.split('-')[-1]) for x in s['index']]
s=s.explode('index').set_index('index').T.reset_index()
s
Out[52]: 
index Col1  2020-06-13 00:00:00  ...  2020-06-15 00:00:00  2020-06-16 00:00:00
0       A1                  2.3  ...                  2.3                 1.65
1       A2                  1.4  ...                  1.4                 1.40
2       A3                  1.3  ...                  1.3                 1.30
[3 rows x 5 columns]

将非日期时间列转换为索引,然后在列表推导式中创建新的数据帧,最后通过concatnumpy.broadcast_to连接在一起:

df1 = df.set_index('Col1')
dfs = [pd.DataFrame(data=np.broadcast_to(df1.iloc[:,[i]].to_numpy(), 
shape=(len(df1), len(pd.date_range(s, e)))), 
index=df1.index, 
columns=pd.date_range(s, e))
if pd.notna(e) 
else pd.DataFrame(df1.iloc[:,[i]].to_numpy(), 
index=df1.index, 
columns=[pd.to_datetime(s)]) 
for i, (s, e) in enumerate(df1.columns.str.split('-', expand=True))]
df = pd.concat(dfs, axis=1)
print (df)
2020-06-13  2020-06-14  2020-06-15  2020-06-16
Col1                                                
A1           2.3         2.3         2.3        1.65
A2           1.4         1.4         1.4        1.40
A3           1.3         1.3         1.3        1.30

如果可能重叠:

print (df)
Col1  6/13/2020-6/16/2020  6/16/2020
0   A1                  2.3       1.65 <- 6/16/2020 is overlap
1   A2                  1.4       1.40
2   A3                  1.3       1.30
df1 = df.set_index('Col1')
dfs = [pd.DataFrame(data=np.broadcast_to(df1.iloc[:,[i]].to_numpy(), 
shape=(len(df1), len(pd.date_range(s, e)))), 
index=df1.index, 
columns=pd.date_range(s, e))
if pd.notna(e) 
else pd.DataFrame(df1.iloc[:,[i]].to_numpy(), 
index=df1.index, 
columns=[pd.to_datetime(s)]) 
for i, (s, e) in enumerate(df1.columns.str.split('-', expand=True))]
df = pd.concat(dfs, axis=1).sum(level=0, axis=1)
print (df)
2020-06-13  2020-06-14  2020-06-15  2020-06-16
Col1                                                
A1           2.3         2.3         2.3        3.95
A2           1.4         1.4         1.4        2.80
A3           1.3         1.3         1.3        2.60

相关内容

  • 没有找到相关文章

最新更新